2 resultados para Weathering.
em Academic Archive On-line (Stockholm University
Resumo:
This study is concerned with speciation and fractionation of the rare earth elements (REE) and calcium (Ca) in aqueous solutions. The aim is to investigate the chemical states and physical sizes in which these elements can be present. The REE (including neodymium) and Ca have contrasting geochemical behavior in aqueous solutions. Ca is a major dissolved element, while the REE are trace components and highly reactive with aquatic particles. The major interests of the five papers included in this thesis are the following: · Papers I and V deal with the behavior of neodymium (Nd) and its isotopes in the Kalix River and some marine waters. · The diffusive gradients in thin-films (DGT) method is developed for measuring Ca and Mg in Paper II. · Paper III presents a speciation and fractionation study of Ca in the Kalix and Amazonian rivers. · The rare earth elements and their carrier phases are investigated in the Kalix river in Paper IV. For most elements a detailed study of speciation and fractionation can not be performed using only one method. This is due to the overall heterogeneity of the material, considering both size and chemical composition, which is present in aquatic solutions. During this project the aquatic geochemistry of the REE and Ca has been studied using mainly three methods; cross-flow filtration (CFF), field-flow fractionation (FFF) and diffusive gradients in thin-films (DGT). Field work has to a large part been conducted in the Kalix River, in northern Sweden, which is one of the last pristine river systems in Europe. Some field work has also been conducted in the Baltic Sea and the Arctic Ocean. Results from Amazonian rivers are also presented. These are the main conclusions from this work: The DGT technique works equally well for measuring Ca and Mg in natural waters as previously reported for trace metal. A significant colloidal phase for Ca could be detected in the Kalix River and in different Amazonian rivers. This was concluded independently using both CFF and FFF. Variations in REE signatures in the Kalix River suggests two different pathways for the REE during weathering and release form soil profiles and transport in the river. No significant variation in Nd-isotopic composition could be detected in the Kalix River although concentrations varied by a factor of ~10. This suggests that there is one major source for Nd in the river although different pathways for the REE may exist. A study of Nd in the Kalix River, the Baltic Sea and the Arctic Ocean showed that the isotopic compositions in the diffusible fractions were similar to water samples. However, the relative amount of diffusible Nd increased with salinity, probably reflecting the lower concentration of colloidal and particulate material in marine waters.
Resumo:
Mountain centered glaciers have played a major role throughout the last three million years in the Scandinavian mountains. The climatic extremes, like the present warm interglacial or cold glacial maxima, are very short-lived compared to the periods of intermediate climate conditions, characterized by the persistence of mountain based glaciers and ice fields of regional size. These have persisted in the Scandinavian mountains for about 65% of the Quaternary. Mountain based glaciers thus had a profound impact on large-scale geomorphology, which is manifested in large-scale glacial landforms such as fjords, glacial lakes and U-shaped valleys in and close to the mountain range. Through a mapping of glacial landforms in the northern Scandinavian mountain range, in particular a striking set of lateral moraines, this thesis offers new insights into Weichselian stages predating the last glacial maximum. The aerial photograph mapping and field evidence yield evidence that these lateral moraines were overridden by glacier ice subsequent to their formation. The lateral moraines were dated using terrestrial cosmogenic nuclide techniques. Although the terrestrial cosmogenic nuclide signature of the moraines is inconclusive, an early Weichselian age is tentatively suggested through correlations with other landforms and stratigraphical archives in the region. The abundance and coherent spatial pattern of the lateral moraines also allow a spatial reconstruction of this ice field. The ice field was controlled by topography and had nunataks protruding also where it was thickest close to the elevation axis of the Scandinavian mountain range. Outlet glaciers discharged into the Norwegian fjords and major valleys in Sweden. The process by which mountain based glaciers grow into an ice sheet is a matter of debate. In this thesis, a feedback mechanism between debris on the ice surface and ice sheet growth is presented. In essence, the growth of glaciers and ice sheets may be accelerated by an abundance of debris in their ablation areas. This may occur when the debris cover on the glacier surface inhibits ablation, effectively increasing the glaciers mass balance. It is thus possible that a dirty ablation area may cause the glacier to advance further than a clean glacier under similar conditions. An ice free period of significant length allows soil production through weathering, frost shattering, and slope processes. As glaciers advance through this assemblage of sediments, significant amounts of debris end up on the surface due to both mass wastage and subglacial entrainment. Evidence that this chain of events may occur, is given by large expanses of hummocky moraine (local name Veiki moraine) in the northern Swedish lowlands. Because the Veiki moraine has been correlated with the first Weichselian advance following the Eemian, it implies a heavily debris charged ice sheet emanating from the mountain range and terminating in a stagnant fashion in the lowlands.