2 resultados para TEMPERATURE RESPONSES

em Academic Archive On-line (Stockholm University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last few decades, coral reefs have become a disappearing feature of tropical marine environments, and those reefs that do remain are severely threatened. It is understood that humans have greately altered the environment under which these ecosystems previously have thrived and evoloved. Overharvesting of fish stocks, global warming and pollution are some of the most prominent threats, acting on coral reefs at several spatial and temporal scales. Presently, it is common that coral reefs have been degraded into alternative ecosystem regimes, such as macroalgae-dominated or sea urchin-barren. Although these ecosystems could potentially return to coral dominance in a long-term perspective, when considdering current conditions, it seems likely that they will persist in their degraded states. Thus, recovery of coral reefs cannot be taken for granted on a human timescale. Multiple stressors and disturbances, which are increasingly characteristic of coral reef environments today, are believed to act synergistically and produce ecological surprises. However, current knowledge of effects of compounded disturbances and stress is limited. Based on five papers, this thesis investigates the sublethal response of multiple stressors on coral physiology, as well as the effects of compounded stress and disturbance on coral reef structure and function. Adaptive responses to stress and disturbance in relation to prior experience are highlighted. The thesis further explores how inherent characteristics (traits) of corals and macroalgae may influence regime expression when faced with altered disturbance regimes, in particular overfishing, eutrophication, elevated temperature, and enhanced substrate availability. Finally, possibilities of affecting the resilience of macroalgae-dominaed reefs and shifting the community composition towards a coral-dominated regime are explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing temperatures resulting from climate change have within recent years been shown to advance phenological events in a large number of species worldwide. Species can differ in their response to increasing temperatures, and understanding the mechanisms that determine the response is therefore of great importance in order to understand and predict how a warming climate can influence both individual species, but also their interactions with each other and the environment. Understanding the mechanisms behind responses to increasing temperatures are however largely unexplored. The selected study system consisting of host plant species of the Brassicaceae family and their herbivore Anthocharis cardamines, is assumed to be especially vulnerable to climatic variations. Through the use of this study system, the aim of this thesis is to study differences in the effect of temperature on development to start of flowering within host plant species from different latitudinal regions (study I), and among host plant species (study II). We also investigate whether different developmental phases leading up to flowering differ in sensitivity to temperature (study II), and if small-scale climatic variation in spring temperature influence flowering phenology and interactions with A. cardamines (study III). Finally, we investigate if differences in the timing of A. cardamines relative to its host plants influence host species use and the selection of host individuals differing in phenology within populations (study IV). Our results showed that thermal reaction norms differ among regions along a latitudinal gradient, with the host plant species showing a mixture of co-, counter- and mixed gradient patterns (study I). We also showed that observed differences in the host plant species order of flowering among regions and years might be caused by both differences in the distribution of warm days during development and differences in the sensitivity to temperature in different phases of development (study II). In addition, we showed that small-scale variations in temperature led to variation in flowering phenology among and within populations of C. pratensis, impacting the interactions with the butterfly herbivore A. cardamines. Another result was that the less the mean plant development stage of a given plant species in the field deviated from the stage preferred by the butterfly for oviposition, the more used was the species as a host by the butterfly (study IV). Finally, we showed that the later seasonal appearance of the butterflies relative to their host plants, the higher butterfly preference for host plant individuals with a later phenology, corresponding to a preference for host plants in earlier development stages (study IV). For our study system, this thesis suggest that climate change will lead to changes in the interactions between host plants and herbivore, but that differences in phenology among host plants combined with changes in host species use of the herbivore might buffer the herbivore against negative effects of climate change. Our work highlights the need to understand the mechanisms behind differences in the responses of developmental rates to temperature between interacting species, as well as the need to account for differences in temperature response for interacting organisms from different latitudinal origins and during different developmental phases in order to understand and predict the consequences of climate change.