2 resultados para Superfluid helium

em Academic Archive On-line (Stockholm University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutron stars are some of the most fascinating objects in Nature. Essentially all aspects of physics seems to be represented inside them. Their cores are likely to contain deconfined quarks, hyperons and other exotic phases of matter in which the strong interaction is the dominant force. The inner region of their solid crust is penetrated by superfluid neutrons and their magnetic fields may reach well over 1012 Gauss. Moreover, their extreme mean densities, well above the densities of nuclei, and their rapid rotation rates makes them truly relativistic both in the special as well as in the general sense. This thesis deals with a small subset of these phenomena. In particular the exciting possibility of trapping of gravita-tional waves is examined from a theoretical point of view. It is shown that the standard condition R < 3M is not essential to the trapping mechanism. This point is illustrated using the elegant tool provided by the optical geometry. It is also shown that a realistic equation of state proposed in the literature allows stable neutron star models with closed circular null orbits, something which is closely related to trapped gravitational waves. Furthermore, the general relativistic theory of elasticity is reviewed and applied to stellar models. Both static equilibrium as well as radially oscillating configurations with elasticsources are examined. Finally, Killing tensors are considered and their applicability to modeling of stars is discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic physics plays an important role in determining the evolution stages in a wide range of laboratory and cosmic plasmas. Therefore, the main contribution to our ability to model, infer and control plasma sources is the knowledge of underlying atomic processes. Of particular importance are reliable low temperature dielectronic recombination (DR) rate coefficients. This thesis provides systematically calculated DR rate coefficients of lithium-like beryllium and sodium ions via ∆n = 0 doubly excited resonant states. The calculations are based on complex-scaled relativistic many-body perturbation theory in an all-order formulation within the single- and double-excitation coupled-cluster scheme, including radiative corrections. Comparison of DR resonance parameters (energy levels, autoionization widths, radiative transition probabilities and strengths) between our theoretical predictions and the heavy-ion storage rings experiments (CRYRING-Stockholm and TSRHeidelberg) shows good agreement. The intruder state problem is a principal obstacle for general application of the coupled-cluster formalism on doubly excited states. Thus, we have developed a technique designed to avoid the intruder state problem. It is based on a convenient partitioning of the Hilbert space and reformulation of the conventional set of pairequations. The general aspects of this development are discussed, and the effectiveness of its numerical implementation (within the non-relativistic framework) is selectively illustrated on autoionizing doubly excited states of helium.