2 resultados para SPLICEOSOMAL INTRONS

em Academic Archive On-line (Stockholm University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homing endonucleases are rare-cutting enzymes that cleave DNA at a site near their own location, preferentially in alleles lacking the homing endonuclease gene (HEG). By cleaving HEG-less alleles the homing endonuclease can mediate the transfer of its own gene to the cleaved site via a process called homing, involving double strand break repair. Via homing, HEGs are efficiently transferred into new genomes when horizontal exchange of DNA occurs between organisms. Group I introns are intervening sequences that can catalyse their own excision from the unprocessed transcript without the need of any proteins. They are widespread, occurring both in eukaryotes and prokaryotes and in their viruses. Many group I introns encode a HEG within them that confers mobility also to the intron and mediates the combined transfer of the intron/HEG to intronless alleles via homing. Bacteriophage T4 contains three such group I introns and at least 12 freestanding HEGs in its genome. The majority of phages besides T4 do not contain any introns, and freestanding HEGs are also scarcely represented among other phages. In the first paper we looked into why group I introns are so rare in phages related to T4 in spite of the fact that they can spread between phages via homing. We have identified the first phage besides T4 that contains all three T-even introns and also shown that homing of at least one of the introns has occurred recently between some of the phages in Nature. We also show that intron homing can be highly efficient between related phages if two phages infect the same bacterium but that there also exists counteracting mechanisms that can restrict the spread of introns between phages. In the second paper we have looked at how the presence of introns can affect gene expression in the phage. We find that the efficiency of splicing can be affected by variation of translation of the upstream exon for all three introns in T4. Furthermore, we find that splicing is also compromised upon infection of stationary-phase bacteria. This is the first time that the efficiency of self-splicing of group I introns has been coupled to environmental conditions and the potential effect of this on phage viability is discussed. In the third paper we have characterised two novel freestanding homing endonucleases that in some T-even-like phages replace two of the putative HEGs in T4. We also present a new theory on why it is a selective advantage for freestanding, phage homing endonucleases to cleave both HEG-containing and HEG-less genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well-established that the organization of nuclear components influences gene expression processes, yet little is known about the mechanisms that contribute to the spatial co-ordination of nuclear activities. The salivary gland cells of Chironomus tentans provide a suitable model system for studying gene expression in situ, as they allow for direct visualization of the synthesis, processing and export of a specific protein-coding transcript, the Balbiani ring (BR) pre-mRNA, in a nuclear environment in which chromatin and non-chromatin structures can easily be distinguished. The RNAbinding protein Hrp65 has been identified in this model system as a protein associated with non-chromatin nucleoplasmic fibers, referred to as connecting fibers (CFs). The CFs associate with BR RNP particles in the nucleoplasm, suggesting that Hrp65 is involved in mRNA biogenesis at the post-transcriptional level. However, the function of Hrp65 is not known, nor is the function or the composition of CFs. In the work described in this thesis, we have identified by yeast two-hybrid screening and characterized different proteins that bind to Hrp65. These proteins include a novel hnRNP protein in C. tentans named Hrp59, various isoforms of Hrp65, the splicing- and mRNA export factor HEL/UAP56, and a RING-domain protein of unknown function. Immuno-electron microscopy experiments showed that Hrp59 and HEL are present in CFs, and in larger structures in the nucleoplasm of C. tentans salivary gland cells. Hrp59 is a C. tentans homologue of human hnRNP M, and it associates cotranscriptionally with a subset of pre-mRNAs, including its own transcript, in a manner that does not depend quantitatively on the amount of synthesized RNA. Hrp59 accompanies the BR pre-mRNA from the gene to the nuclear envelope, and is released from the BR mRNA at the nuclear pore complex. We have identified the preferred RNA targets of Hrp59 in Drosophila cells, and we have shown that Hrp59 binds preferentially to exonic splicing enhancer sequences. Hrp65 self-associates through an evolutionarily conserved domain that can also mediate heterodimerization of Hrp65 homologues. Different isoforms of Hrp65 interact with each other in all possible combinations, and Hrp65 can oligomerize into complexes of at least six molecules. The interaction between different Hrp65 isoforms is crucial for their intracellular localization, and we have discovered a mechanism by which Hrp65-2 is imported into the nucleus through binding to Hrp65-1. Hrp65 binds to HEL/UAP56 in C. tentans cells. We have analyzed the distribution of the two proteins on polytene chromosomes and in the nucleoplasm of salivary gland cells, and our results suggest that Hrp65 and HEL become associated during posttranscriptional gene expression events. HEL binds to the BR pre-mRNP cotranscriptionally, and incorporation of HEL into the pre-mRNP does not depend on the location of introns along the BR pre-mRNA. HEL accompanies the BR mRNP to the nuclear pore and is released from the BR mRNP during translocation into the cytoplasm.