2 resultados para Rosenberg Self-esteem Scale - Rosenberg Self-esteem Scale

em Academic Archive On-line (Stockholm University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In modern society, individuals constantly pass judgments on their own body and physical competence as well as that of other people. All too often, the verdict is less favourable. For the person, these physical self-perceptions (PSP) may negatively affect global self-esteem, identity, and general mental well being. The overall aim of this thesis is to examine primarily the role that exercise, but also the roles that gender and culture, play in the formation of PSP. In Study I, using confirmatory factor analyses, strong support for the validity of a first-order, and a second-order hierarchical and multidimensional model of the Physical Self-Perception Profile (PSPP: Fox & Corbin, 1989) was found across three national samples (Great Britain, Sweden and Turkey) of university students. Cross-cultural differences were detected, with the British sample demonstrating higher latent means on all PSPP subdomains except for the physical condition subdomain (Condition), than the Swedish and Turkish samples. In Study II, a higher self-reported exercise frequency was associated with more positive PSP (in particular for Condition) and more importance attributed to PSP in Swedish university students. Males demonstrated higher overall PSPP-scores than females. In Study III, a true-experimental design with randomisation into an intervention and a control group was adopted. Strong support for the effects of an empowerment-based exercise intervention programme on PSP and social physique anxiety (SPA) over six months for adolescent girls was found. The relations of exercise, gender and culture with PSP, SPA and self-esteem are discussed from the standpoints of a variety of theoretical models (the EXSEM-model), and frameworks (self-presentation and objectification theory). The two theories of self-enhancement and skill-development are examined with regard to the direction of the exercise-physical self relationship and motivation for exercise. Arguments for the relevance of exercise and PSP for practitioners in promoting general mental well-being and preventing modern-day diseases are outlined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths.  We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process.  We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.