2 resultados para Radiation induced skin reactions

em Academic Archive On-line (Stockholm University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents and uses the techniques of computational chemistry to explore two different processes induced in human skin by ultraviolet light. The first is the transformation of urocanic acid into a immunosuppressing agent, and the other is the enzymatic action of the 8-oxoguanine glycosylase enzyme. The photochemistry of urocanic acid is investigated by time-dependent density functional theory. Vertical absorption spectra of the molecule in different forms and environments is assigned and candidate states for the photochemistry at different wavelengths are identified. Molecular dynamics simulations of urocanic acid in gas phase and aqueous solution reveals considerable flexibility under experimental conditions, particularly for for the cis isomer where competition between intra- and inter-molecular interactions increases flexibility. A model to explain the observed gas phase photochemistry of urocanic acid is developed and it is shown that a reinterpretation in terms of a mixture between isomers significantly enhances the agreement between theory and experiment , and resolves several peculiarities in the spectrum. A model for the photochemistry in the aqueous phase of urocanic acid is then developed, in which two excited states governs the efficiency of photoisomerization. The point of entrance into a conical intersection seam is shown to explain the wavelength dependence of photoisomerization quantum yield. Finally some mechanistic aspects of the DNA repair enzyme 8-oxoguanine glycosylase is investigated with density functional theory. It is found that the critical amino acid of the active site can provide catalytic power in several different manners, and that a recent proposal involving a SN1 type of mechanism seems the most efficient one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of immune self-tolerance allows the immune system to mount responses against infectious agents, but not against self-molecular constitutes. Although self-tolerance is a robust phenomenon, in some individuals as well as in experimental models, the self-tolerance breaks down and as a result, a self-destructive autoimmune disease emerges. The underlying mechanisms for the development of autoimmune diseases are not known, but genetic, environmental and immunological factors are suggested to be involved. In this thesis, we used murine mercury-induced autoimmunity to test this suggestion. In susceptible mice mercuric chloride induces a systemic autoimmune disease characterized by increased serum levels of IgG1 and IgE, production of anti-nucleolar autoantibodies (ANolA) and formation of renal IgG deposits. In contrast, in resistant DBA/2 (H-2d) mice, none of these characteristics develop after exposure to mercury. By crossing and backcrossing mercury-resistant DBA/2 mice to mercury susceptible strains, we found that the resistance was inherited as a dominant trait in F1 hybrids and that one gene or a cluster of genes located in the H-2 loci determined the resistance to ANolA production, whereas resistance to the other characteristics was found to be controlled by two or three non-H-2 genes. We further put forward the “cryptic peptide hypothesis” to investigate whether mercury and another xenobiotic metal use similar pathway(s) to induce the H-2 linked production of ANolA. We found that while mercury stimulated ANolA synthesis in all H-2 susceptible (H-2s, H-2q and H-2f) mouse strains, silver induced only ANolA responses in H-2s and H-2q mice, but not in H-2f mice. Further studies showed that the resistance to silver-induced ANolA production in H-2f mice was inherited as a dominant trait. We next tested the proposition that mercury induces more adverse immunological effects in mouse strains, which are genetically prone to develop autoimmune diseases, using tight-skin 1 mice, an animal model for human Scleroderma. It was found that in this strain, mercury induced a strong immune activation with autoimmune characteristics, but did not accelerate the development of dermal fibrosis, a characteristic in Tsk/1 mice. Finally we addressed the Th1/Th2 cross-regulation paradigm by examining if a Th1-type of response could interact with a Th2-type of response if simultaneous induced in susceptible mice. Our findings demonstrated that mercury-induced autoimmunity (Th2-type) and collagen-induced arthritis (CIA) (Th1-type) can interact in a synergistic, antagonistic or additive fashion, depending on at which stage of CIA mercury is administered.