2 resultados para Post-transcriptional gene regulation

em Academic Archive On-line (Stockholm University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects are useful models for the study of innate immune reactions and development. The distinction between recognition mechanisms preceding the breakdown of apoptotic cells during metamorphosis, and the breakdown of cells in response to infections, is unclear. Hemolin, a Lepidopteran member of the immunoglobulin superfamily, is a candidate molecule in self/nonself recognition. This thesis investigates hemolin function and hemolin gene regulation at a molecular level. We investigated the binding and cell adhesion properties of hemolin from H. cecropia and demonstrated that the proteins could homodimerize in presence of calcium. Moreover, a higher molecular weight membrane form of hemolin was present on hemocytes. These results, taken together with an earlier finding that soluble hemolin inhibits hemocyte adhesion, indicated that the secreted hemolin could modulate hemocyte aggregation in a competitive manner in the blood. In addition, hemolin was expressed in different tissues and at different developmental stages. Since hemolin is expressed both during development and during the immune response, its different regulatory factors must act in concert. We found that the third intron contains an enhancer, through which Dif, C/EBP and HMGI synergistically activate a reporter construct in vitro. We concluded that the enhancer is used during infection, since the κB-site is crucial for an immune response. Interestingly, we also found that the active form of the steroid hormone, ecdysone, induces the hemolin gene transcription in vivo, and in addition, acts synergistically during bacterial infection. Preliminary in vivo results indicate a secondary effect of ecdysone and the importance of hormone receptor elements in the upstream promoter region of hemolin. To explore the use of Drosophila as a genetic tool for understanding hemolin function and regulation, we sought to isolate the functional homologue in this species. A fly cDNA library in yeast was screened using H. cecropia hemolin as bait. The screen was not successful. However, it did lead to the discovery of a Drosophila protein with true binding specificity for hemolin. Subsequent characterization revealed a new, highly conserved gene, which we named yippee. Yippee is distantly related to zinc finger proteins and represents a novel family of proteins present in numerous eukaryotes, including fungi, plants and humans. Notably, when the Drosophila genome sequence was revealed, no hemolin orthologue could be detected. Finally, an extensive Drosophila genome chip analysis was initiated. The goal was to investigate the Drosophila immune response, and, in contrast to earlier studies of artificially injected flies, to examine a set of natural microbes, orally and externally applied. In parallel experiments viruses, bacteria, fungi and parasites were compared to unchallenged controls. We obtained a unique set of genes that were up-regulated in the response to the parasite Octosporea muscadomesticae and to the fungus Beauveria bassiana. We expect both down-regulated and up-regulated genes to serve as a source for the discovery of new effector molecules, in particular those that are active against parasites and fungi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well-established that the organization of nuclear components influences gene expression processes, yet little is known about the mechanisms that contribute to the spatial co-ordination of nuclear activities. The salivary gland cells of Chironomus tentans provide a suitable model system for studying gene expression in situ, as they allow for direct visualization of the synthesis, processing and export of a specific protein-coding transcript, the Balbiani ring (BR) pre-mRNA, in a nuclear environment in which chromatin and non-chromatin structures can easily be distinguished. The RNAbinding protein Hrp65 has been identified in this model system as a protein associated with non-chromatin nucleoplasmic fibers, referred to as connecting fibers (CFs). The CFs associate with BR RNP particles in the nucleoplasm, suggesting that Hrp65 is involved in mRNA biogenesis at the post-transcriptional level. However, the function of Hrp65 is not known, nor is the function or the composition of CFs. In the work described in this thesis, we have identified by yeast two-hybrid screening and characterized different proteins that bind to Hrp65. These proteins include a novel hnRNP protein in C. tentans named Hrp59, various isoforms of Hrp65, the splicing- and mRNA export factor HEL/UAP56, and a RING-domain protein of unknown function. Immuno-electron microscopy experiments showed that Hrp59 and HEL are present in CFs, and in larger structures in the nucleoplasm of C. tentans salivary gland cells. Hrp59 is a C. tentans homologue of human hnRNP M, and it associates cotranscriptionally with a subset of pre-mRNAs, including its own transcript, in a manner that does not depend quantitatively on the amount of synthesized RNA. Hrp59 accompanies the BR pre-mRNA from the gene to the nuclear envelope, and is released from the BR mRNA at the nuclear pore complex. We have identified the preferred RNA targets of Hrp59 in Drosophila cells, and we have shown that Hrp59 binds preferentially to exonic splicing enhancer sequences. Hrp65 self-associates through an evolutionarily conserved domain that can also mediate heterodimerization of Hrp65 homologues. Different isoforms of Hrp65 interact with each other in all possible combinations, and Hrp65 can oligomerize into complexes of at least six molecules. The interaction between different Hrp65 isoforms is crucial for their intracellular localization, and we have discovered a mechanism by which Hrp65-2 is imported into the nucleus through binding to Hrp65-1. Hrp65 binds to HEL/UAP56 in C. tentans cells. We have analyzed the distribution of the two proteins on polytene chromosomes and in the nucleoplasm of salivary gland cells, and our results suggest that Hrp65 and HEL become associated during posttranscriptional gene expression events. HEL binds to the BR pre-mRNP cotranscriptionally, and incorporation of HEL into the pre-mRNP does not depend on the location of introns along the BR pre-mRNA. HEL accompanies the BR mRNP to the nuclear pore and is released from the BR mRNP during translocation into the cytoplasm.