2 resultados para Phosphates.

em Academic Archive On-line (Stockholm University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with in-situ time-, temperature- and pressure-resolved synchrotron X-ray powder diffraction investigations of a variety of inorganic compounds with twodimensional layer structures and three-dimensional framework structures. In particular, phase stability, reaction kinetics, thermal expansion and compressibility at non-ambient conditions has been studied for 1) Phosphates with composition MIV(HPO4)2·nH2O (MIV = Ti, Zr); 2) Pyrophosphates and pyrovanadates with composition MIVX2O7 (MIV = Ti, Zr and X = P, V); 3) Molybdates with composition ZrMo2O8. The results are compiled in seven published papers and two manuscripts. Reaction kinetics for the hydrothermal synthesis of α-Ti(HPO4)2·H2O and intercalation of alkane diamines in α-Zr(HPO4)2·H2O was studied using time-resolved experiments. In the high-temperature transformation of γ-Ti(PO4)(H2PO4)·2H2O to TiP2O7 three intermediate phases, γ'-Ti(PO4)(H2PO4)·(2-x)H2O, β-Ti(PO4)(H2PO4) and Ti(PO4)(H2P2O7)0.5 were found to crystallise at 323, 373 and 748 K, respectively. A new tetragonal three-dimensional phosphate phase called τ-Zr(HPO4)2 was prepared, and subsequently its structure was determined and refined using the Rietveld method. In the high-temperature transformation from τ-Zr(HPO4)2 to cubic α-ZrP2O7 two new orthorhombic intermediate phases were found. The first intermediate phase, ρ-Zr(HPO4)2, forms at 598 K, and the second phase, β-ZrP2O7, at 688 K. Their respective structures were solved using direct methods and refined using the Rietveld method. In-situ high-pressure studies of τ-Zr(HPO4)2 revealed two new phases, tetragonal ν-Zr(HPO4)2 and orthorhombic ω-Zr(HPO4)2 that crystallise at 1.1 and 8.2 GPa. The structure of ν-Zr(HPO4)2 was solved and refined using the Rietveld method. The high-pressure properties of the pyrophosphates ZrP2O7 and TiP2O7, and the pyrovanadate ZrV2O7 were studied up to 40 GPa. Both pyrophosphates display smooth compression up to the highest pressures, while ZrV2O7 has a phase transformation at 1.38 GPa from cubic to pseudo-tetragonal β-ZrV2O7 and becomes X-ray amorphous at pressures above 4 GPa. In-situ high-pressure studies of trigonal α-ZrMo2O8 revealed the existence of two new phases, monoclinic δ-ZrMo2O8 and triclinic ε-ZrMo2O8 that crystallises at 1.1 and 2.5 GPa, respectively. The structure of δ-ZrMo2O8 was solved by direct methods and refined using the Rietveld method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, mechanistic and synthetic studies on transformations of H-phosphonates into DNA analogues containing P-S or P-C bonds are described. Configurational stability of dinucleoside H-phosphonates and the stereochemical course of their sulfurisation in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were investigated. In light of these studies, the reported stereoselective sulfurisation of dinucleoside H-phosphonates and benzoylphosphonates in the presence of DBU was proved to be incorrect. Efficient protocols for the synthesis of new nucleotide analogues with non-ionic C-phosphonate internucleotide linkages were developed. The synthesis of dinucleoside 2-pyridylphosphonates was successfully performed by a DBU-promoted reaction of H-phosphonate diesters with N-methoxypyridinium salts. The thio analogues, 2-pyridyl- and 4-pyridyl phosphonothioate diesters, could be obtained by modifying the reactions developed for their oxo counterparts. Dinucleoside 3-pyridylphosphonates were prepared via a palladium(0)-catalysed cross coupling strategy that could be extended also to the synthesis of nucleotide analogues with metal-complexing properties, i.e. terpyridyl- and bipyridylphosphonate derivatives. Oligonucleotides modified with pyridylphosphonate internucleotide linkages have been prepared and preliminary studies on their hybridisation properties and resistance towards enzymatic degradation were performed. Finally, nucleotidic units for the incorporation of pyridylphosphonate groups at the 5’-terminus of oligonucleotides were designed. Condensations of such units with a suitably protected nucleoside afforded after oxidation the expected dinucleoside (3’-5’)-phosphates with pyridylphosphonate monoester functions at the 5’-ends.