2 resultados para PURM. Glass powder. Composites. Thermal insulation. Environment
em Academic Archive On-line (Stockholm University
Resumo:
This thesis is concerned with in-situ time-, temperature- and pressure-resolved synchrotron X-ray powder diffraction investigations of a variety of inorganic compounds with twodimensional layer structures and three-dimensional framework structures. In particular, phase stability, reaction kinetics, thermal expansion and compressibility at non-ambient conditions has been studied for 1) Phosphates with composition MIV(HPO4)2·nH2O (MIV = Ti, Zr); 2) Pyrophosphates and pyrovanadates with composition MIVX2O7 (MIV = Ti, Zr and X = P, V); 3) Molybdates with composition ZrMo2O8. The results are compiled in seven published papers and two manuscripts. Reaction kinetics for the hydrothermal synthesis of α-Ti(HPO4)2·H2O and intercalation of alkane diamines in α-Zr(HPO4)2·H2O was studied using time-resolved experiments. In the high-temperature transformation of γ-Ti(PO4)(H2PO4)·2H2O to TiP2O7 three intermediate phases, γ'-Ti(PO4)(H2PO4)·(2-x)H2O, β-Ti(PO4)(H2PO4) and Ti(PO4)(H2P2O7)0.5 were found to crystallise at 323, 373 and 748 K, respectively. A new tetragonal three-dimensional phosphate phase called τ-Zr(HPO4)2 was prepared, and subsequently its structure was determined and refined using the Rietveld method. In the high-temperature transformation from τ-Zr(HPO4)2 to cubic α-ZrP2O7 two new orthorhombic intermediate phases were found. The first intermediate phase, ρ-Zr(HPO4)2, forms at 598 K, and the second phase, β-ZrP2O7, at 688 K. Their respective structures were solved using direct methods and refined using the Rietveld method. In-situ high-pressure studies of τ-Zr(HPO4)2 revealed two new phases, tetragonal ν-Zr(HPO4)2 and orthorhombic ω-Zr(HPO4)2 that crystallise at 1.1 and 8.2 GPa. The structure of ν-Zr(HPO4)2 was solved and refined using the Rietveld method. The high-pressure properties of the pyrophosphates ZrP2O7 and TiP2O7, and the pyrovanadate ZrV2O7 were studied up to 40 GPa. Both pyrophosphates display smooth compression up to the highest pressures, while ZrV2O7 has a phase transformation at 1.38 GPa from cubic to pseudo-tetragonal β-ZrV2O7 and becomes X-ray amorphous at pressures above 4 GPa. In-situ high-pressure studies of trigonal α-ZrMo2O8 revealed the existence of two new phases, monoclinic δ-ZrMo2O8 and triclinic ε-ZrMo2O8 that crystallises at 1.1 and 2.5 GPa, respectively. The structure of δ-ZrMo2O8 was solved by direct methods and refined using the Rietveld method.
Resumo:
A whisker is a common name of single crystalline inorganic fibre of small dimensions, typically 0.5-1 μm in diameter and 20-50 μm in length. Whiskers are mainly used as reinforcement of ceramics. This work describes the synthesis and characterisation of new whisker types. Ti0.33Ta0.33Nb0.33CxN1-x, TiB2, B4C, and LaxCe1-xB6 have been prepared by carbothermal vapour–liquid–solid (CTR-VLS) growth mechanisms in the temperature range 900-1800°C, in argon or nitrogen. Generally, carbon and different suitable oxides were used as whisker precursors. The oxides reacted via a carbothermal reduction process. A halogenide salt was added to form gaseous metal halogenides or oxohalogenides and small amount of a transition metal was added to catalyse the whisker growth. In this mechanism, the whisker constituents are dissolved into the catalyst, in liquid phase, which becomes supersaturated. Then a whisker could nucleate and grow out under continuous feed of constituents. The syntheses of TiC, TiB2, and B4C were followed at ordinary synthesis conditions by means of mass spectrometry (MS), thermogravimetry (TG), differential thermal analysis (DTA) and quenching. The main reaction starting temperatures and reaction time for the different mixtures was revealed, and it was found that the temperature inside the crucible during the reactions was up to 100°C below the furnace set-point, due to endothermic nature of the reactions. Quench experiments showed that whiskers were formed already when reaching the temperature plateau, but the yield increased fast with the holding time and reached a maximum after about 20-30 minutes. Growth models for whisker formation have been proposed. Alumina based composites reinforced by (2-5 vol.%) TiCnano and TiNnano and 25 vol.% of carbide, and boride phases (whiskers and particulates of TiC, TiN, TaC, NbC, (Ti,Ta)C, (Ti,Ta,Nb)C, SiC, TiB2 and B4C) have been prepared by a developed aqueous colloidal processing route followed by hot pressing for 90 min at 1700°C, 28 MPa or SPS sintering for 5 minutes at 1200-1600°C and 75 MPa. Vickers indentation measurements showed that the lowest possible sintering temperature is to prefer from mechanical properties point of view. In the TiNnano composites the fracture mode was typically intergranular, while it was transgranular in the SiCnano composites. The whisker and particulate composites have been compared in terms of e.g. microstructure and mechanical properties. Generally, additions of whiskers yielded higher fracture toughness compared to particulates. Composites of commercially available SiC whiskers showed best mechanical properties with a low spread but all the other whisker phases, especially TiB2, exhibited a great potential as reinforcement materials.