2 resultados para Multivariate data
em Academic Archive On-line (Stockholm University
Resumo:
In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins. In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles.
Resumo:
A faithful depiction of the tropical atmosphere requires three-dimensional sets of observations. Despite the increasing amount of observations presently available, these will hardly ever encompass the entire atmosphere and, in addition, observations have errors. Additional (background) information will always be required to complete the picture. Valuable added information comes from the physical laws governing the flow, usually mediated via a numerical weather prediction (NWP) model. These models are, however, never going to be error-free, why a reliable estimate of their errors poses a real challenge since the whole truth will never be within our grasp. The present thesis addresses the question of improving the analysis procedures for NWP in the tropics. Improvements are sought by addressing the following issues: - the efficiency of the internal model adjustment, - the potential of the reliable background-error information, as compared to observations, - the impact of a new, space-borne line-of-sight wind measurements, and - the usefulness of multivariate relationships for data assimilation in the tropics. Most NWP assimilation schemes are effectively univariate near the equator. In this thesis, a multivariate formulation of the variational data assimilation in the tropics has been developed. The proposed background-error model supports the mass-wind coupling based on convectively-coupled equatorial waves. The resulting assimilation model produces balanced analysis increments and hereby increases the efficiency of all types of observations. Idealized adjustment and multivariate analysis experiments highlight the importance of direct wind measurements in the tropics. In particular, the presented results confirm the superiority of wind observations compared to mass data, in spite of the exact multivariate relationships available from the background information. The internal model adjustment is also more efficient for wind observations than for mass data. In accordance with these findings, new satellite wind observations are expected to contribute towards the improvement of NWP and climate modeling in the tropics. Although incomplete, the new wind-field information has the potential to reduce uncertainties in the tropical dynamical fields, if used together with the existing satellite mass-field measurements. The results obtained by applying the new background-error representation to the tropical short-range forecast errors of a state-of-art NWP model suggest that achieving useful tropical multivariate relationships may be feasible within an operational NWP environment.