3 resultados para Lightest supersymmetric particles

em Academic Archive On-line (Stockholm University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The annihilation of weakly interacting massive particles (WIMPs), accumulated in gravitational potentials (e.g., the core of the Earth, the Sun or the Galactic halo) would lead to neutrino production. This thesis investigates the possibility of searching for WIMPs in the form of the lightest supersymmetric particle (neutralino) trapped in the Sun using the AMANDA-II neutrino telescope. AMANDA-II is a large Cherenkov detector located deep in the ice at the geographical South Pole. The presented work is based on data taken during the year 2001. An analysis optimized to search for the neutralino-induced flux from the Sun has been developed. The observation of no excess with respect to the expected atmospheric neutrino background has been interpreted as an upper limit on the neutralino annihilation rate in the Sun and on the neutralino-induced muon flux in the vicinity of the detector.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is very strong evidence that ordinary matter in the Universe is outweighed by almost ten times as much so-called dark matter. Dark matter does neither emit nor absorb light and we do not know what it is. One of the theoretically favoured candidates is a so-called neutralino from the supersymmetric extension of the Standard Model of particle physics. A theoretical calculation of the expected cosmic neutralino density must include the so-called coannihilations. Coannihilations are particle processes in the early Universe with any two supersymmetric particles in the initial state and any two Standard Model particles in the final state. In this thesis we discuss the importance of these processes for the calculation of the relic density. We will go through some details in the calculation of coannihilations with one or two so-called sfermions in the initial state. This includes a discussion of Feynman diagrams with clashing arrows, a calculation of colour factors and a discussion of ghosts in non-Abelian field theory. Supersymmetric models contain a large number of free parameters on which the masses and couplings depend. The requirement, that the predicted density of cosmic neutralinos must agree with the density observed for the unknown dark matter, will constrain the parameters. Other constraints come from experiments which are not related to cosmology. For instance, the supersymmetric loop contribution to the rare b -> sγ decay should agree with the measured branching fraction. The principles of the calculation of the rare decay are discussed in this thesis. Also on-going and planned searches for cosmic neutralinos can constrain the parameters. In one of the accompanying papers in the thesis we compare the detection prospects for several current and future searches for neutralino dark matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Searches for the supersymmetric partner of the top quark (stop) are motivated by natural supersymmetry, where the stop has to be light to cancel the large radiative corrections to the Higgs boson mass. This thesis presents three different searches for the stop at √s = 8 TeV and √s = 13 TeV using data from the ATLAS experiment at CERN’s Large Hadron Collider. The thesis also includes a study of the primary vertex reconstruction performance in data and simulation at √s = 7 TeV using tt and Z events. All stop searches presented are carried out in final states with a single lepton, four or more jets and large missing transverse energy. A search for direct stop pair production is conducted with 20.3 fb−1 of data at a center-of-mass energy of √s = 8 TeV. Several stop decay scenarios are considered, including those to a top quark and the lightest neutralino and to a bottom quark and the lightest chargino. The sensitivity of the analysis is also studied in the context of various phenomenological MSSM models in which more complex decay scenarios can be present. Two different analyses are carried out at √s = 13 TeV. The first one is a search for both gluino-mediated and direct stop pair production with 3.2 fb−1 of data while the second one is a search for direct stop pair production with 13.2 fb−1 of data in the decay scenario to a bottom quark and the lightest chargino. The results of the analyses show no significant excess over the Standard Model predictions in the observed data. Consequently, exclusion limits are set at 95% CL on the masses of the stop and the lightest neutralino.