2 resultados para Life-history Traits
em Academic Archive On-line (Stockholm University
Resumo:
Animals and plants in temperate regions must adapt their life cycle to pronounced seasonal variation. The research effort that has gone into studying these cyclical life history events, or phenological traits, has increased greatly in recent decades. As phenological traits are often correlated to temperature, they are relevant to study in terms of understanding the effect of short term environmental variation as well as long term climate change. Because of this, changes in phenology are the most obvious and among the most commonly reported responses to climate change. Moreover, phenological traits are important for fitness as they determine the biotic and abiotic environment an individual encounters. Fine-tuning of phenology allows for synchronisation at a local scale to mates, food resources and appropriate weather conditions. On a between-population scale, variation in phenology may reflect regional variation in climate. Such differences can not only give insights to life cycle adaptation, but also to how populations may respond to environmental change through time. This applies both on an ecological scale through phenotypic plasticity as well as an evolutionary scale through genetic adaptation. In this thesis I have used statistical and experimental methods to investigate both the larger geographical patterns as well as mechanisms of fine-tuning of phenology of several butterfly species. The main focus, however, is on the orange tip butterfly, Anthocharis cardamines, in Sweden and the United Kingdom. I show a contrasting effect of spring temperature and winter condition on spring phenology for three out of the five studied butterfly species. For A. cardamines there are population differences in traits responding to these environmental factors between and within Sweden and the UK that suggest adaptation to local environmental conditions. All populations show a strong negative plastic relationship between spring temperature and spring phenology, while the opposite is true for winter cold duration. Spring phenology is shifted earlier with increasing cold duration. The environmental variables show correlations, for example, during a warm year a short winter delays phenology while a warm spring speeds phenology up. Correlations between the environmental variables also occur through space, as the locations that have long winters also have cold springs. The combined effects of these two environmental variables cause a complex geographical pattern of phenology across the UK and Sweden. When predicting phenology with future climate change or interpreting larger geographical patterns one must therefore have a good enough understanding of how the phenology is controlled and take the relevant environmental factors in to account. In terms of the effect of phenological change, it should be discussed with regards to change in life cycle timing among interacting species. For example, the phenology of the host plants is important for A. cardamines fitness, and it is also the main determining factor for oviposition. In summary, this thesis shows that the broad geographical pattern of phenology of the butterflies is formed by counteracting environmental variables, but that there also are significant population differences that enable fine-tuning of phenology according to the seasonal progression and variation at the local scale.
Resumo:
Sexual selection arises through variation in reproductive success. This thesis investigates different aspects important in sexual selection, namely nest building, sperm competition, paternity and paternal care, and their mutual interrelationships. In the studied species, the sand goby (Pomatoschistus minutus) and the common goby (Pomatoschistus microps), sperm competition did arise when small males, so called sneakers, sneaked into other males nests and released sperm. They seemed to use female behaviour as their prime cue for a sneaking opportunity. However, also nest-holders, both with and without eggs, were found to fertilize eggs in the nests of other males. Clearly, nest-holding males tried to prevent other males from spreading their sperm in their nests, since they showed aggression towards such males. A nest building experiment indicated that the small nest-openings found in the sneaker male treatment were sexually selected through protection against sneaking or by female choice. Yet, no behavioural or genetical support for the hypothesis that the nest functions as a physical or visual defence, or that sneaker males prefer to sneak upon nests with wide nest-openings, were found in the other studies. Still, individual nest-holding males showed a higher mucus preparation effort inside the nest in the presence of a sneaker male than when alone. In close relatives, such mucus contains sperm, suggesting an importance in sperm competition. However, the mucus may also have pheromone and anti-bacterial functions and may constitute a mating effort, as found in other gobies. Both a behavioural and a mate choice experiment suggested that the males were not less eager to spawn in the presence of a sneaker male. Sneak intrusion did not affect nest defence, fanning or filial cannibalism, nor had paternity an effect on filial cannibalism. This and various life history aspects, together with the fact that the parasitic male only fertilized a fraction of the clutches, would predict females to ignore sneaker males. This was also the case, as the presence of sneaker males was found not to affect female spawning decision. Still, several females spawned in two nests, which coincided with parasitic spawnings, suggesting a cost of disturbance for the females and thus a substantial cost to the nest-holding males in terms of lost mating success. However, females paid attention to other traits in their choice of mate since spawning was associated with sand volume of the nest, but not with nest-opening width. Also, female (but not male) courtship was correlated with partial clutch filial cannibalism, indicating that females are able to anticipate future male cannibalism. In a partial correlation of nest opening, sand volume, male courtship display, displacement fanning and male size, a large number of traits were correlated both positively and negatively with regard to how we may expect them to be appreciated by females. For instance, males which fan well also build large nests or display intensely (but not both). Together with all the other results of this thesis, this shows the entangled selection pressures working on breeding animals, as well as the different male and female tactics employed to maximize their reproduction.