2 resultados para Ketene Valence Isomers
em Academic Archive On-line (Stockholm University
Resumo:
This thesis presents and uses the techniques of computational chemistry to explore two different processes induced in human skin by ultraviolet light. The first is the transformation of urocanic acid into a immunosuppressing agent, and the other is the enzymatic action of the 8-oxoguanine glycosylase enzyme. The photochemistry of urocanic acid is investigated by time-dependent density functional theory. Vertical absorption spectra of the molecule in different forms and environments is assigned and candidate states for the photochemistry at different wavelengths are identified. Molecular dynamics simulations of urocanic acid in gas phase and aqueous solution reveals considerable flexibility under experimental conditions, particularly for for the cis isomer where competition between intra- and inter-molecular interactions increases flexibility. A model to explain the observed gas phase photochemistry of urocanic acid is developed and it is shown that a reinterpretation in terms of a mixture between isomers significantly enhances the agreement between theory and experiment , and resolves several peculiarities in the spectrum. A model for the photochemistry in the aqueous phase of urocanic acid is then developed, in which two excited states governs the efficiency of photoisomerization. The point of entrance into a conical intersection seam is shown to explain the wavelength dependence of photoisomerization quantum yield. Finally some mechanistic aspects of the DNA repair enzyme 8-oxoguanine glycosylase is investigated with density functional theory. It is found that the critical amino acid of the active site can provide catalytic power in several different manners, and that a recent proposal involving a SN1 type of mechanism seems the most efficient one.
Resumo:
Ordinary yet unique, water is the substance on which life is based. Water seems, at first sight, to be a very simple molecule, consisting of two hydrogen atoms attached to one oxygen. Its small size belies the complexity of its action and its numerous anomalies, central to a broad class of important phenomena, ranging from global current circulation, terrestrial water and CO2 cycles to corrosion and wetting. The explanation of this complex behavior comes from water's unique ability to form extensive three-dimensional networks of hydrogen-bonds, whose nature and structures, in spite of a great deal of efforts involving a plethora of experimental and theoretical techniques, still lacks a complete scientific understanding. This thesis is devoted to the study of the local structure of hydrogen-bonded liquids, with a particular emphasis on water, taking advantage of a combination of core-level spectroscopies and density functional theory spectra calculations. X-ray absorption, in particular, is found to be sensitive to the local hydrogen-bond environment, thus offering a very promising tool for spectroscopic identification of specific structural configurations in water, alcohols and aqueous solutions. More specifically, the characteristic spectroscopic signature of the broken hydrogen-bond at the hydrogen side is used to analyze the structure of bulk water, leading to the finding that most molecules are arranged in two hydrogen-bond configurations, in contrast to the picture provided by molecular dynamics simulations. At the liquid-vapor interface, an interplay of surface sensitive measurements and theoretical calculations enables us to distinguish a new interfacial species in equilibrium with the gas. In a similar approach the cluster form of the excess proton in highly concentrated acid solutions and the different coordination of methanol at the vacuum interface and in the bulk can also be clearly identified. Finally the ability of core-level spectroscopies, aided by sophisticated density functional theory calculations, to directly probe the valence electronic structure of a system is used to observe the nature of the interaction between water molecules and solvated ions in solution. Water around transition metal ions is found to interact with the solute via orbital mixing with the metal d-orbitals. The hydrogen-bond between water molecules is explained in terms of electrostatic interactions enhanced by charge rehybridization in which charge transfer between connecting molecules is shown to be fundamental.