2 resultados para Ingredients
em Academic Archive On-line (Stockholm University
Resumo:
This thesis presents Bayesian solutions to inference problems for three types of social network data structures: a single observation of a social network, repeated observations on the same social network, and repeated observations on a social network developing through time. A social network is conceived as being a structure consisting of actors and their social interaction with each other. A common conceptualisation of social networks is to let the actors be represented by nodes in a graph with edges between pairs of nodes that are relationally tied to each other according to some definition. Statistical analysis of social networks is to a large extent concerned with modelling of these relational ties, which lends itself to empirical evaluation. The first paper deals with a family of statistical models for social networks called exponential random graphs that takes various structural features of the network into account. In general, the likelihood functions of exponential random graphs are only known up to a constant of proportionality. A procedure for performing Bayesian inference using Markov chain Monte Carlo (MCMC) methods is presented. The algorithm consists of two basic steps, one in which an ordinary Metropolis-Hastings up-dating step is used, and another in which an importance sampling scheme is used to calculate the acceptance probability of the Metropolis-Hastings step. In paper number two a method for modelling reports given by actors (or other informants) on their social interaction with others is investigated in a Bayesian framework. The model contains two basic ingredients: the unknown network structure and functions that link this unknown network structure to the reports given by the actors. These functions take the form of probit link functions. An intrinsic problem is that the model is not identified, meaning that there are combinations of values on the unknown structure and the parameters in the probit link functions that are observationally equivalent. Instead of using restrictions for achieving identification, it is proposed that the different observationally equivalent combinations of parameters and unknown structure be investigated a posteriori. Estimation of parameters is carried out using Gibbs sampling with a switching devise that enables transitions between posterior modal regions. The main goal of the procedures is to provide tools for comparisons of different model specifications. Papers 3 and 4, propose Bayesian methods for longitudinal social networks. The premise of the models investigated is that overall change in social networks occurs as a consequence of sequences of incremental changes. Models for the evolution of social networks using continuos-time Markov chains are meant to capture these dynamics. Paper 3 presents an MCMC algorithm for exploring the posteriors of parameters for such Markov chains. More specifically, the unobserved evolution of the network in-between observations is explicitly modelled thereby avoiding the need to deal with explicit formulas for the transition probabilities. This enables likelihood based parameter inference in a wider class of network evolution models than has been available before. Paper 4 builds on the proposed inference procedure of Paper 3 and demonstrates how to perform model selection for a class of network evolution models.
Resumo:
High-impact, localized intense rainfall episodes represent a major socio-economic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HARMONIE regional climate model (HCLIM) with three different setups; two using convection parameterization at 15 and 6.25 km horizontal resolution (the latter within the “grey-zone” scale), with lateral boundary conditions provided by ERA-Interim reanalysis and integrated over a pan-European domain, and one with explicit convection at 2 km resolution (HCLIM2) over the Alpine region driven by the 15 km model. Seven summer seasons were sampled and validated against two high-resolution observational data sets. All HCLIM versions underestimate the number of dry days and hours by 20-40%, and overestimate precipitation over the Alpine ridge. Also, only modest added value were found of “grey-zone” resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at sub-daily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and meso-scale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.