2 resultados para In silico analysis of Candida albicans promoter sequences
em Academic Archive On-line (Stockholm University
Resumo:
Insects encounter many microorganisms in nature and to survive they have developed counter measures against the invading pathogens. In Drosophila melanogaster research on insect immunity has mainly been focused on infections by bacteria and fungi. We have explored the immune response against natural infections of the parasite Octosporea muscaedomesticae and the Drosophila C virus as compared to natural infections of bacteria and fungi. By using Affymetrix Drosophila GeneChips, we were able to obtain 48 genes uniquely induced after parasitic infection. It was also clearly shown that natural infections led to different results than when injecting the pathogens. In order to search for the ultimate role of the lepidopteran protein hemolin, we used RNA interference (RNAi). We could show that injection of double stranded RNA (dsRNA) of Hemolin in pupae of Hyalophora cecropia led to embryonic malformation and lethality and that there was a sex specific difference. We continued the RNAi investigation of hemolin in another lepidopteran species, Antheraea pernyi, and discovered that hemolin was induced by dsRNA per se. A similar induction of hemolin was seen after infection with baculovirus and we therefore performed in vivo experiments on baculovirus infected pupae. We could show that a low dose of dsHemolin prolonged the period before the A. pernyi pupae showed any symptoms of infection, while a high dose led to a more rapid onset of symptoms. By performing in silico analysis of the hemolin sequence from A. pernyi in comparison with other Hemolin sequences, it was possible to select a number of sites that either by being strongly conserved or variable could be important targets for future studies of hemolin function.
Resumo:
In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins. In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles.