4 resultados para Environmental accounting methods
em Academic Archive On-line (Stockholm University
Resumo:
The thesis analyses relationships between ecological and social systems in the context of coastal ecosystems. It examines human impacts from resource extraction and addresses management and governance behind resource exploitation. The main premises are that a lack of ecological knowledge leads to poor ecosystem management and that the dichotomy between social and natural systems is an artificial one. The thesis illustrates the importance of basing resource management on the ecological conditions of the resource and its ecosystem. It also demonstrates the necessity of accounting for the human dimension in ecosystem management and the challenges of organising human actions for sustainable use of ecosystem services in the face of economic incentives that push users towards short-term extraction. Many Caribbean coral reefs have undergone a shift from coral to macroalgal domination. An experiment on Glovers Reef Atoll in Belize manually cleared patch reefs in a no-take zone and a fished zone (Papers I and II). The study hypothesised that overfishing has reduced herbivorous fish populations that control macroalgae growth. Overall, management had no significant effect on fish abundance and the impacts of the algal reduction were short-lived. This illustrated that the benefits of setting aside marine reserves in impacted environments should not be taken for granted. Papers III and IV studied the development of the lobster and conch fisheries in Belize, and the shrimp farming industry in Thailand respectively. These studies found that environmental feedback can be masked to give the impression of resource abundance through sequential exploitation. In both cases inadequate property rights contributed to this unsustainable resource use. The final paper (V) compared the responses to changes in the resource by the lobster fisheries in Belize and Maine in terms of institutions, organisations and their role in management. In contrast to Maine’s, the Belize system seems to lack social mechanisms for responding effectively to environmental feedback. The results illustrate the importance of organisational and institutional diversity that incorporate ecological knowledge, respond to ecosystem feedback and provide a social context for learning from and adapting to change.
Resumo:
Modern food production is a complex, globalized system in which what we eat and how it is produced are increasingly disconnected. This thesis examines some of the ways in which global trade has changed the mix of inputs to food and feed, and how this affects food security and our perceptions of sustainability. One useful indicator of the ecological impact of trade in food and feed products is the Appropriated Ecosystem Areas (ArEAs), which estimates the terrestrial and aquatic areas needed to produce all the inputs to particular products. The method is introduced in Paper I and used to calculate and track changes in imported subsidies to Swedish agriculture over the period 1962-1994. In 1994, Swedish consumers needed agricultural areas outside their national borders to satisfy more than a third of their food consumption needs. The method is then applied to Swedish meat production in Paper II to show that the term “Made in Sweden” is often a misnomer. In 1999, almost 80% of manufactured feed for Swedish pigs, cattle and chickens was dependent on imported inputs, mainly from Europe, Southeast Asia and South America. Paper III examines ecosystem subsidies to intensive aquaculture in two nations: shrimp production in Thailand and salmon production in Norway. In both countries, aquaculture was shown to rely increasingly on imported subsidies. The rapid expansion of aquaculture turned these countries from fishmeal net exporters to fishmeal net importers, increasingly using inputs from the Southeastern Pacific Ocean. As the examined agricultural and aquacultural production systems became globalized, levels of dependence on other nations’ ecosystems, the number of external supply sources, and the distance to these sources steadily increased. Dependence on other nations is not problematic, as long as we are able to acknowledge these links and sustainably manage resources both at home and abroad. However, ecosystem subsidies are seldom recognized or made explicit in national policy or economic accounts. Economic systems are generally not designed to receive feedbacks when the status of remote ecosystems changes, much less to respond in an ecologically sensitive manner. Papers IV and V discuss the problem of “masking” of the true environmental costs of production for trade. One of our conclusions is that, while the ArEAs approach is a useful tool for illuminating environmentally-based subsidies in the policy arena, it does not reflect all of the costs. Current agricultural and aquacultural production methods have generated substantial increases in production levels, but if policy continues to support the focus on yield and production increases alone, taking the work of ecosystems for granted, vulnerability can result. Thus, a challenge is to develop a set of complementary tools that can be used in economic accounting at national and international scales that address ecosystem support and performance. We conclude that future resilience in food production systems will require more explicit links between consumers and the work of supporting ecosystems, locally and in other regions of the world, and that food security planning will require active management of the capacity of all involved ecosystems to sustain food production.
Resumo:
Rapid economic development has occurred during the past few decades in China with the Yangtze River Delta (YRD) area as one of the most progressive areas. The urbanization, industrialization, agricultural and aquaculture activities result in extensive production and application of chemicals. Organohalogen contaminants (OHCs) have been widely used as i.e. pesticides, flame retardants and plasticizers. They are persistent, bioaccumulative and pose a potential threat to ecosystem and human health. However, limited research has been conducted in the YRD with respect to chemicals environmental exposure. The main objective of this thesis is to investigate the contamination level, distribution pattern and sources of OHCs in the YRD. Wildlife from different habitats are used to indicate the environmental pollution situation, and evaluate selected matrices for use in long term biomonitoring to determine the environmental stress the contamination may cause. In addition, a method is developed for dicofol analysis. Moreover, a specific effort is made to introduce statistic power analysis to assist in optimal sampling design. The thesis results show extensive contamination of OHCs in wildlife in the YRD. The occurrences of high concentrations of chlorinated paraffins (CPs) are reported in wildlife, in particular in terrestrial species, (i.e. short-tailed mamushi snake and peregrine falcon). Impurities and byproducts of pentachlorophenol products, i.e. polychlorinated diphenyl ethers (PCDEs) and hydroxylated polychlorinated diphenyl ethers (OH-PCDEs) are identified and reported for the first time in eggs from black-crowned night heron and whiskered tern. High concentrations of octachlorodibenzo-p-dioxin (OCDD) are determined in these samples. The toxic equivalents (TEQs) of polychlorinated dibenzo-p-dioxin (PCDDs) and polychlorinated dibenzofurans (PCDFs) are at mean levels of 300 and 520 pg TEQ g-1lw (WHO2005 TEQ) in eggs from the two bird species, respectively. This is two orders of magnitude higher than European Union (EU) regulation limit in chicken eggs. Also, a novel pattern of polychlorinated biphenyls (PCBs) with octa- to decaCBs, contributing to as much as 20% of total PCBs therein, are reported in birds. The legacy POPs shows a common characteristic with relatively high level of organochlorine pesticides (i.e. DDT, hexacyclohexanes (HCHs) and Mirex), indicating historic applications. In contrast, rather low concentrations are shown of industrial chemicals such as PCBs and polybrominated diphenyl ethers (PBDEs). A refined and improved analytical method is developed to separate dicofol from its major decomposition compound, 4,4’-dichlorobenzophenone. Hence dicofol is possible to assess as such. Statistic power analysis demonstrates that sampling of sedentary species should be consistently spread over a larger area to monitor temporal trends of contaminants in a robust manner. The results presented in this thesis show high CPs and OCDD concentrations in wildlife. The levels and patterns of OHCs in YRD differ from other well studied areas of the world. This is likely due to the extensive production and use of chemicals in the YRD. The results strongly signal the need of research biomonitoring programs that meet the current situation of the YRD. Such programs will contribute to the management of chemicals and environment in YRD, with the potential to grow into the human health sector, and to expand to China as a whole.
Resumo:
Human societies are reliant on the functioning of the hydrologic cycle. The atmospheric branch of this cycle, often referred to as moisture recycling in the context of land-to-land exchange, refers to water evaporating, traveling through the atmosphere, and falling out as precipitation. Similar to the surface water cycle that uses the watershed as the unit of analysis, it is also possible to consider a ‘watershed of the sky’ for the atmospheric water cycle. Thus, I explore the precipitationshed - defined as the upwind surface of the Earth that provides evaporation that later falls as precipitation in a specific place. The primary contributions of this dissertation are to (a) introduce the precipitationshed concept, (b) provide a quantitative basis for the study of the precipitationshed, and (c) demonstrate its use in the fields of hydrometeorology, land-use change, social-ecological systems, ecosystem services, and environmental governance. In Paper I, the concept of the precipitationshed is introduced and explored for the first time. The quantification of precipitationshed variability is described in Paper II, and the key finding is that the precipitationsheds for multiple regions are persistent in time and space. Moisture recycling is further described as an ecosystem service in Paper III, to integrate the concept into the existing language of environmental sustainability and management. That is, I identify regions where vegetation more strongly regulates the provision of atmospheric water, as well as the regions that more strongly benefit from this regulation. In Paper IV, the precipitationshed is further explored through the lens of urban reliance on moisture recycling. Using a novel method, I quantify the vulnerability of urban areas to social-ecological changes within their precipitationsheds. In Paper V, I argue that successful moisture recycling governance will require flexible, transboundary institutions that are capable of operating within complex social-ecological systems. I conclude that, in the future, the precipitationshed can be a key tool in addressing the complexity of social-ecological systems.