3 resultados para ENZYMATIC CATALYSIS
em Academic Archive On-line (Stockholm University
Resumo:
This thesis presents and uses the techniques of computational chemistry to explore two different processes induced in human skin by ultraviolet light. The first is the transformation of urocanic acid into a immunosuppressing agent, and the other is the enzymatic action of the 8-oxoguanine glycosylase enzyme. The photochemistry of urocanic acid is investigated by time-dependent density functional theory. Vertical absorption spectra of the molecule in different forms and environments is assigned and candidate states for the photochemistry at different wavelengths are identified. Molecular dynamics simulations of urocanic acid in gas phase and aqueous solution reveals considerable flexibility under experimental conditions, particularly for for the cis isomer where competition between intra- and inter-molecular interactions increases flexibility. A model to explain the observed gas phase photochemistry of urocanic acid is developed and it is shown that a reinterpretation in terms of a mixture between isomers significantly enhances the agreement between theory and experiment , and resolves several peculiarities in the spectrum. A model for the photochemistry in the aqueous phase of urocanic acid is then developed, in which two excited states governs the efficiency of photoisomerization. The point of entrance into a conical intersection seam is shown to explain the wavelength dependence of photoisomerization quantum yield. Finally some mechanistic aspects of the DNA repair enzyme 8-oxoguanine glycosylase is investigated with density functional theory. It is found that the critical amino acid of the active site can provide catalytic power in several different manners, and that a recent proposal involving a SN1 type of mechanism seems the most efficient one.
Resumo:
Palladium nanoparticles have been immobilized into an amino-functionalized metal-organic framework (MOF), MIL-101Cr-NH2, to form Pd@MIL-101Cr-NH2. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16wt%Pd@MIL-101Cr-NH2). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N-2-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH2, electron tomography was employed to reconstruct the 3D volume of 8wt%Pd@MIL-101Cr-NH2 particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki-Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8wt% palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15mol%). The material can be recycled at least 10times without alteration of its catalytic properties.
Resumo:
Metal–organic frameworks, or MOFs, have emerged as a new class of porous materials made by linking metal and organic units. The easy preparation, structural and functional tunability, ultrahigh porosity, and enormous surface areas of MOFs have led to them becoming one of the fastest growing fields in chemistry. MOFs have potential applications in numerous areas such as clean energy, adsorption and separation processes, biomedicine, and sensing. One of the most promising areas of research with MOFs is heterogeneous catalysis. This thesis describes the design and synthesis of new, carboxylate-based MOFs for use as catalysts. These materials have been characterized using diffraction, spectroscopy, adsorption, and imaging techniques. The thesis has focused on preparing highly-stable MOFs for catalysis, using post-synthetic methods to modify the properties of these crystals, and applying a combination of characterization techniques to probe these complex materials. In the first part of this thesis, several new vanadium MOFs have been presented. The synthesis of MIL-88B(V), MIL-101(V), and MIL-47 were studied using ex situ techniques to gain insight into the synthesis–structure relationships. The properties of these materials have also been studied. In the second part, the use of MOFs as supports for metallic nanoparticles has been investigated. These materials, Pd@MIL-101–NH2(Cr) and Pd@MIL-88B–NH2(Cr), were used as catalysts for Suzuki–Miyaura and oxidation reactions, respectively. The effect of the base on the catalytic activity, crystallinity, porosity, and palladium distribution of Pd@MIL-101–NH2(Cr) was studied. In the final part, the introduction of transition-metal complexes into MOFs through different synthesis routes has been described. A ruthenium complex was grafted onto an aluminium MOF, MOF-253, and an iridium metallolinker was introduced into a zirconium MOF, UiO-68–2CH3. These materials were used as catalysts for alcohol oxidation and allylic alcohol isomerization, respectively.