2 resultados para Dispersal rates
em Academic Archive On-line (Stockholm University
Resumo:
Both long-term environmental changes such as those driven by the glacial cycles and more recent anthropogenic impacts have had major effects on the past demography in wild organisms. Within species, these changes are reflected in the amount and distribution of neutral genetic variation. In this thesis, mitochondrial and microsatellite DNA was analysed to investigate how environmental and anthropogenic factors have affected genetic diversity and structure in four ecologically different animal species. Paper I describes the post-glacial recolonisation history of the speckled-wood butterfly (Pararge aegeria) in Northern Europe. A decrease in genetic diversity with latitude and a marked population structure were uncovered, consistent with a hypothesis of repeated founder events during the postglacial recolonisation. Moreover, Approximate Bayesian Computation analyses indicate that the univoltine populations in Scandinavia and Finland originate from recolonisations along two routes, one on each side of the Baltic. Paper II aimed to investigate how past sea-level rises affected the population history of the convict surgeonfish (Acanthurus triostegus) in the Indo-Pacific. Assessment of the species’ demographic history suggested a population expansion that occurred approximately at the end of the last glaciation. Moreover, the results demonstrated an overall lack of phylogeographic structure, probably due to the high dispersal rates associated with the species’ pelagic larval stage. Populations at the species’ eastern range margin were significantly differentiated from other populations, which likely is a consequence of their geographic isolation. In Paper III, we assessed the effect of human impact on the genetic variation of European moose (Alces alces) in Sweden. Genetic analyses revealed a spatial structure with two genetic clusters, one in northern and one in southern Sweden, which were separated by a narrow transition zone. Moreover, demographic inference suggested a recent population bottleneck. The inferred timing of this bottleneck coincided with a known reduction in population size in the 19th and early 20th century due to high hunting pressure. In Paper IV, we examined the effect of an indirect but well-described human impact, via environmental toxic chemicals (PCBs), on the genetic variation of Eurasian otters (Lutra lutra) in Sweden. Genetic clustering assignment revealed differentiation between otters in northern and southern Sweden, but also in the Stockholm region. ABC analyses indicated a decrease in effective population size in both northern and southern Sweden. Moreover, comparative analyses of historical and contemporary samples demonstrated a more severe decline in genetic diversity in southern Sweden compared to northern Sweden, in agreement with the levels of PCBs found.
Resumo:
In the green-veined white butterfly (Pieris napi), females obtain direct fitness benefits from mating multiply and studies have shown that fitness increases seemingly monotonically with number of matings. The reason is that at mating males transfer a large nutritious gift (a so called nuptial gift) to the females that the females use to increase both their fecundity and lifespan. In addition, if exposed to poor food conditions as larvae, females mature at a smaller size compared to males. Accordingly, it was suggested that smaller females could compensate for their size through nuptial feeding by, for instance, mating more frequently. We did not find any support for that hypothesis. On the contrary, larger females remated sooner and had a higher lifetime number of matings. Neither were smaller females able to compensate in any other way, because singly mated females and multiply mated females suffered to the same extent from their smaller size. This thesis also shows that despite the positive relationship between fitness and number of matings, there is a large variation in female mating frequency in wild populations and about every second female mates only once or twice. This variation is not dependent on how often females get courted by males, because female mating frequency was shown not to be affected by male courtship intensity. Hence, the reason for the low mating frequency could either be that males have evolved the ability to manipulate females to mate at a suboptimal rate as a measure of protection against sperm competition, or alternatively, that female mating rate is suppressed by some costs. Using two selection lines, artificially selected for either a high or a low mating rate, we showed that the variation in mating rate was mainly a female trait because which line the females were from affected their mating rate whereas which line the male was from did not. This implies that females mate at a low rate due to hidden costs or due to constraints. The same study also showed that females with a high "intrinsic" mating rate lived shorter, but only when denied remating. This led us to test the hypothesis that the cost females face is to have the ability to mate at a high rate but the cost is only paid when remating opportunities are scarce. However, we found no support for such an idea, because females with a high intrinsic mating rate held in a cold environment where the butterflies were prevented from flying and feeding did not live shorter. Neither was there an effect of a female’s mating rate on her ability to quickly break down and convert male nutrient gifts into egg material. Female mating rate did, on the other hand, affect dispersal tendency, with low mating rate females being more inclined to fly between different habitats. The underlying reason for this is still to be explored.