2 resultados para Chemical modification of polymers
em Academic Archive On-line (Stockholm University
Resumo:
Using x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES) and x-ray photoelectron spectroscopy (XPS) in combination with density functional theory (DFT) the changes in electronic and geometric structure of hydrocarbons upon adsorption are determined. The chemical bonding is analyzed and the results provide new insights in the mechanisms responsible for dehydrogenation in heterogeneous catalysis. In the case of alkanes, n-octane and methane are studied. XAS and XES show significant changes in the electronic structure upon adsorption. XES shows new adsorption induced occupied states and XAS shows quenching of CH*/Rydberg states in n-octane. In methane the symmetry forbidden gas phase lowest unoccupied molecular orbital becomes allowed due to broken symmetry. New adsorption induced unoccupied features with mainly metal character appear just above the Fermi level in XA spectra of both adsorbed methane and n-octane. These changes are not observed in DFT total energy geometry optimizations. Comparison between experimental and computed spectra for different adsorbate geometries reveals that the molecular structures are significantly changed in both molecules. The C-C bonds in n-octane are shortened upon adsorption and the C-H bonds are elongated in both n-octane and methane. In addition ethylene and acetylene are studied as model systems for unsaturated hydrocarbons. The validity of both the Dewar-Chatt-Duncanson chemisorption model and the alternative spin-uncoupling picture is confirmed, as well as C-C bond elongation and upward bending of the C-H bonds. The bonding of ethylene to Cu(110) and Ni(110) are compared and the results show that the main difference is the amount of back-donation into the molecular π* orbital, which allows the molecule to desorb molecularly from the Cu(110) surface, whereas it is dehydrogenated upon heating on the Ni(110) surface. Acetylene is found to adsorb in two different adsorption sites on the Cu(110) surface at liquid nitrogen temperature. Upon heating the molecules move into one of these sites due to attractive adsorbate-adsorbate interaction and only one adsorbed species is present at room temperature, at which point the molecules start reacting to form benzene. The bonding of the two species is very similar in both sites and the carbon atoms are rehybridized essentially to sp2.
Resumo:
This thesis is focused on studies of substituted Hg-based superconducting copper oxides ((Hg1-xMx)Ba2Can-1CunO2n+2+δ). These compounds are promising objects of investigation, not only from a fundamental point of view but also because of their high values of superconducting transition temperature (Tc) and irreversibility field (Hirr). The first part of the thesis is devoted to optimization of the synthesis procedure for Hg-based cuprates. The influence of different parameters (T, t, p(Hg), p(O2)) on the synthesis of these compounds in sealed silica tubes was studied. Optimal conditions yielded samples containing up to 95% of HgBa2Ca2Cu3O8+δ (Hg-1223). The formation of solid solutions with the formula (Hg1-xCux)Ba2Ca2Cu3O8+δ (where x <= 0.5) was also established. Another technique was developed, using LiF as a flux, for synthesis of samples containing up to 90% of the HgBa2CaCu2O6+δ (Hg-1212) phase. The second part concerns synthesis and studies of oxyfluorides using Hg-1212 and Hg-1223 as starting materials together with XeF2 as a fluorinating agent. It was found that oxyfluorides of both phases have a parabolic dependence of Tc vs. a parameter as well as enhanced Tc values (ΔT ≈ 3-4 K) in comparison with optimally doped non-fluorinated analogues. The crystal structure of Hg-1223 oxyfluoride was studied by X-ray powder and neutron diffraction methods. It is suggested that chemical modification of the crystal structure leads to a decrease in Cu-O distance without noticeable change in Cu-O-Cu angle (in the (CuO2) layers), which may be the significant factors influencing this Tc increase. Hg-1223 oxyfluoride was also studied under high pressure for first time. It was found that this compound has a record-high Tc value (≈ 166 K) at P ≈ 23 GPa. The last part describes the investigation of substituted Hg-based superconductors in the series (Hg0.9M0.1)Ba2CuO4+δ {(Hg,M)-1201}, where M = Tl, Pb, W, Mo, Nb and V. A comprehensive study of these compounds by various methods (X-ray powder diffraction, EDX, IR-, EXAFS- and XANES -spectroscopy) indicated that the change of charge carrier doping level is a crucial factor determining the irreversibility line. (Hg0.9Mo0.1)Ba2CuO4+δ showed the most improved irreversibility line position among the (Hg,M)-1201 compounds studied in this series.