2 resultados para Bond Ground-states

em Academic Archive On-line (Stockholm University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A complete laser cooling setup was built, with focus on threedimensional near-resonant optical lattices for cesium. These consist of regularly ordered micropotentials, created by the interference of four laser beams. One key feature of optical lattices is an inherent ”Sisyphus cooling” process. It efficiently extracts kinetic energy from the atoms, leading to equilibrium temperatures of a few µK. The corresponding kinetic energy is lower than the depth of the potential wells, so that atoms can be trapped. We performed detailed studies of the cooling processes in optical lattices by using the time-of-flight and absorption-imaging techniques. We investigated the dependence of the equilibrium temperature on the optical lattice parameters, such as detuning, optical potential and lattice geometry. The presence of neighbouring transitions in the cesium hyperfine level structure was used to break symmetries in order to identify, which role “red” and “blue” transitions play in the cooling. We also examined the limits for the cooling process in optical lattices, and the possible difference in steady-state velocity distributions for different directions. Moreover, in collaboration with ´Ecole Normale Sup´erieure in Paris, numerical simulations were performed in order to get more insight in the cooling dynamics of optical lattices. Optical lattices can keep atoms almost perfectly isolated from the environment and have therefore been suggested as a platform for a host of possible experiments aimed at coherent quantum manipulations, such as spin-squeezing and the implementation of quantum logic-gates. We developed a novel way to trap two different cesium ground states in two distinct, interpenetrating optical lattices, and to change the distance between sites of one lattice relative to sites of the other lattice. This is a first step towards the implementation of quantum simulation schemes in optical lattices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water is one of the most common compounds on earth and is essential for all biological activities. Water has, however, been a mystery for many years due to the large number of unusual chemical and physical properties, e.g. decreased volume during melting and maximum density at 4 °C. The origin of the anomalies behavior is the nature of the hydrogen bond. This thesis will presented an x-ray absorption spectroscopy (XAS) study to reveal the hydrogen bond structure in liquid water. The x-ray absorption process is faster than a femtosecond and thereby reflects the molecular orbital structure in a frozen geometry locally around the probed water molecules. The results indicate that the electronic structure of liquid water is significantly different from that of the solid and gaseous forms. The molecular arrangement in the first coordination shell of liquid water is actually very similar as the two-hydrogen-bonded configurations at the surface of ice. This discovery suggests that most molecules in liquid water have two-hydrogen-bonded configurations with one donor and one acceptor hydrogen bond compared to the four-hydrogen-bonded tetrahedral structure in ice. This result is controversial since the general picture is that the structure of liquid water is very similar to the structure of ice. The results are, however, consistent with x-ray and neutron diffraction data but reveals serious discrepancies with structures based on current molecular dynamics simulations. The two-hydrogen-bond configuration in liquid water is rigid and heating from 25 °C to 90 °C introduce a minor change in the hydrogen-bonded configurations. Furthermore, XAS studies of water in aqueous solutions show that ion hydration does not affect the hydrogen bond configuration of the bulk. Only water molecules in the close vicinity to the ions show changes in the hydrogen bond formation. XAS data obtained with fluorescence yield are sensitive enough to resolved electronic structure of water molecules in the first hydration sphere and to distinguish between different protonated species. Hence, XAS is a useful tool to provide insight into the local electronic structure of a hydrogen-bonded liquid and it is applied for the first time on water revealing unique information of high importance.