2 resultados para Air sampling apparatus.
em Academic Archive On-line (Stockholm University
Resumo:
This thesis covers sampling and analytical procedures for isocyanates (R-NCO) and amines (R-NH2), two kinds of chemicals frequently used in association with the polymeric material polyurethane (PUR). Exposure to isocyanates may result in respiratory disorders and dermal sensitisation, and they are one of the main causes of occupational asthma. Several of the aromatic diamines associated with PUR production are classified as suspected carcinogens. Hence, the presence of these chemicals in different exposure situations must be monitored. In the context of determining isocyanates in air, the methodologies included derivatisation with the reagent di-n-butylamine (DBA) upon collection and subsequent determination using liquid chromatography (LC) and mass spectrometric detection (MS). A user-friendly solvent-free sampler for collection of airborne isocyanates was developed as an alternative to a more cumbersome impinger-filter sampling technique. The combination of the DBA reagent together with MS detection techniques revealed several new exposure situations for isocyanates, such as isocyanic acid during thermal degradation of PUR and urea-based resins. Further, a method for characterising isocyanates in technical products used in the production of PUR was developed. This enabled determination of isocyanates in air for which pure analytical standards are missing. Tandem MS (MS/MS) determination of isocyanates in air below 10-6 of the threshold limit values was achieved. As for the determination of amines, the analytical methods included derivatisation into pentafluoropropionic amide or ethyl carbamate ester derivatives and subsequent MS analysis. Several amines in biological fluids, as markers of exposure for either the amines themselves or the corresponding isocyanates, were determined by LC-MS/MS at amol level. In aqueous extraction solutions of flexible PUR foam products, toluene diamine and related compounds were found. In conclusion, this thesis demonstrates the usefulness of well characterised analytical procedures and techniques for determination of hazardous compounds. Without reliable and robust methodologies there is a risk that exposure levels will be underestimated or, even worse, that relevant compounds will be completely missed.
Resumo:
In the work underlying this thesis solid-phase microextraction (SPME) was evaluated as a passive sampling technique for organophosphate triesters in indoor air. These compounds are used on a large scale as flame-retarding and plastizicing additives in a variety of materials and products, and have proven to be common pollutants in indoor air. The main objective of this work was to develop an accurate method for measuring the volatile fraction. Such a method can be used in combination with active sampling to obtain information regarding the vapour/particulate distribution in different indoor environments. SPME was investigated under both equilibrium and non-equilibrium conditions and parameters associated with these different conditions were estimated. In Paper I, time-weighted average (TWA) SPME under dynamic conditions was investigated in order to obtain a fast air sampling method for organophosphate triesters. Among the investigated SPME coatings, the absorptive PDMS polymer had the highest affinity for the organophosphate triesters and was consequently used in all further work. Since the sampling rate is dependent on the agitation conditions, the linear airflow rates had to be carefully considered. Sampling periods as short as 1 hour were shown to be sufficient for measurements in the ng-μg m-3 range when using a PDMS 100-μm fibre and a linear flow rate above 7 cm s-1 over the fibre. SPME under equilibrium conditions is rather time-consuming, even under dynamic conditions, for slowly partitioning compounds such as organophosphate triesters. Nevertheless, this method has some significant advantages. For instance, the limit of detection is much lower compared to 1 h TWA sampling. Furthermore, the sampling time can be ignored as long as equilibrium has been attained. In Paper II, SPME under equilibrium conditions was investigated and evaluated for organophosphate triester vapours. Since temperature and humidity are closely associated with the distribution constant a simple study of the effect of these parameters was performed. The obtained distribution constants were used to determine the air levels in a common indoor environment. SPME and parallel active sampling on filters yielded similar results, indicating that the detected compounds were almost entirely associated with the vapour phase To apply dynamic SPME method in the field a sampler device, which enables controlled linear airflow rates to be applied, was constructed and evaluated (Paper III). This device was developed for application of SPME and active sampling in parallel. A GC/PICI-MS/MS method was developed and used in combination with active sampling of organophosphate triesters in indoor air (Paper IV). The combination of MS/MS and the soft ionization achieved with methanol as reagent gas yielded high selectivity and detection limits comparable to those provided by GC with nitrogen-phosphorus detection (NPD). The method limit of detection, when sampling 1.5 m3 of air, was in the range 0.1-1.4 ng m-3. In Paper V, the developed MS method was used in combination with SPME for indoor air measurements. The levels detected in the investigated indoor environments range from a few ng to μg m-3. Tris(2-chloropropyl) phosphate was detected at a concentration as high as 7 μg m-3 in a newly rebuilt lecture room.