3 resultados para 640201 Iron ores (i.e. ferrous ores)
em Academic Archive On-line (Stockholm University
Resumo:
The quantum chemical investigations presented in this thesis use hybrid density functional theory to shed light on the catalytic mechanisms of mononuclear non-heme iron oxygenases, accommodating a ferrous ion in their active sites. More specifically, the dioxygen activation process and the subsequent oxidative reactions in the following enzymes were studied: tetrahydrobiopterin-dependent hydroxylases, naphthalene 1,2-dioxygenase and α-ketoglutarate-dependent enzymes. In light of many experimental efforts devoted to the functional mimics of non-heme iron oxygenases, the reactivity of functional analogues was also examined. The computed energetics and the available experimental data served to assess the feasibility of the reaction mechanisms investigated. Dioxygen activation in tetrahydrobiopterin- and α-ketoglutarate-dependent enzymes were found to involve a high-valent iron-oxo species, which was then capable of substrate hydroxylation. In the case of naphthalene 1,2-dioxygenase, the reactivity of an iron(III)-hydroxperoxo species toward the substrate was investigated and compared to the biomimetic counterpart.
Resumo:
The prehistoric cemetery of Barshalder is located along the main road on the boundary between Grötlingbo and Fide parishes, near the southern end of the island of Gotland in the Baltic Sea. The ceme-tery was used from c. AD 1-1100. The level of publication in Swedish archaeology of the first millennium AD is low compared to, for instance, the British and German examples. Gotland’s rich Iron Age cemeteries have long been intensively excavated, but few have received monographic treatment. This publication is intended to begin filling this gap and to raise the empirical level of the field. It also aims to make explicit and test the often somewhat intuitively conceived re-sults of much previous research. The analyses deal mainly with the Migration (AD 375–540), Vendel (AD 520–790) and Late Viking (AD 1000–1150) Periods. The following lines of inquiry have been prioritised. 1. Landscape history, i.e. placing the cemetery in a landscape-historical context. (Vol. 1, section 2.2.6) 2. Migration Period typochronology, i.e. the study of change in the grave goods. (Vol. 2, chapter 2) 3. Social roles: gender, age and status. (Vol. 2, chapter 3) 4. Religious identity in the 11th century, i.e. the study of religious indicators in mortuary cus-toms and grave goods, with particular emphasis on the relationship between Scandinavian paganism and Christianity. (Vol. 2, chapter 4) Barshalder is found to have functioned as a central cemetery for the surrounding area, located on pe-ripheral land far away from contemporary settle-ment, yet placed on a main road along the coast for maximum visibility and possibly near a harbour. Computer supported correspondence analysis and seriation are used to study the gender attributes among the grave goods and the chronology of the burials. New methodology is developed to distin-guish gender-neutral attributes from transgressed gender attributes. Sub-gender grouping due to age and status is explored. An independent modern chronology system with rigorous type definitions is established for the Migration Period of Gotland. Recently published chronology systems for the Vendel and Viking Periods are critically reviewed, tested and modified to produce more solid models. Social stratification is studied through burial wealth with a quantitative method, and the results are tested through juxtaposition with several other data types. The Late Viking Period graves of the late 10th and 11th centuries are studied in relation to the contemporary Christian graves at the churchyards. They are found to be symbolically soft-spoken and unobtrusive, with all pagan attributes kept apart from the body in a space between the feet of the deceased and the end of the over-long inhumation trench. A small number of pagan reactionary graves with more forceful symbolism are however also identified. The distribution of different 11th cen-tury cemetery types across the island is used to in-terpret the period’s confessional geography, the scale of social organisation and the degree of alle-giance to western and eastern Christianity. 11th century society on Gotland is found to have been characterised by religious tolerance, by an absence of central organisation and by slow piecemeal Christianisation.
Resumo:
Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths. We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process. We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.