1 resultado para L71 - Mining, Extraction, and Refining:
em Academic Archive On-line (Mid Sweden University
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (4)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (14)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Boston University Digital Common (2)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (46)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (97)
- Cochin University of Science & Technology (CUSAT), India (12)
- Coffee Science - Universidade Federal de Lavras (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (6)
- Digital Commons - Montana Tech (7)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (12)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (7)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (25)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (14)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (1)
- Open University Netherlands (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (14)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (77)
- Queensland University of Technology - ePrints Archive (130)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (4)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositorio Institucional da UFLA (RIUFLA) (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (18)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (78)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (16)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Algarve (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (7)
- Université de Montréal (1)
- Université de Montréal, Canada (15)
- University of Connecticut - USA (1)
- University of Michigan (36)
- University of Queensland eSpace - Australia (27)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Data mining can be defined as the extraction of implicit, previously un-known, and potentially useful information from data. Numerous re-searchers have been developing security technology and exploring new methods to detect cyber-attacks with the DARPA 1998 dataset for Intrusion Detection and the modified versions of this dataset KDDCup99 and NSL-KDD, but until now no one have examined the performance of the Top 10 data mining algorithms selected by experts in data mining. The compared classification learning algorithms in this thesis are: C4.5, CART, k-NN and Naïve Bayes. The performance of these algorithms are compared with accuracy, error rate and average cost on modified versions of NSL-KDD train and test dataset where the instances are classified into normal and four cyber-attack categories: DoS, Probing, R2L and U2R. Additionally the most important features to detect cyber-attacks in all categories and in each category are evaluated with Weka’s Attribute Evaluator and ranked according to Information Gain. The results show that the classification algorithm with best performance on the dataset is the k-NN algorithm. The most important features to detect cyber-attacks are basic features such as the number of seconds of a network connection, the protocol used for the connection, the network service used, normal or error status of the connection and the number of data bytes sent. The most important features to detect DoS, Probing and R2L attacks are basic features and the least important features are content features. Unlike U2R attacks, where the content features are the most important features to detect attacks.