1 resultado para INTRUSION
em Academic Archive On-line (Mid Sweden University
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (3)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (18)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (11)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (8)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (2)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (33)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (53)
- Cochin University of Science & Technology (CUSAT), India (14)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (15)
- DigitalCommons - The University of Maine Research (4)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (27)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (9)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (29)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (76)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (43)
- Queensland University of Technology - ePrints Archive (82)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (3)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (98)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (3)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (22)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (11)
- Universidade Federal do Rio Grande do Norte (UFRN) (24)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (10)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (26)
- University of Queensland eSpace - Australia (14)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Data mining can be defined as the extraction of implicit, previously un-known, and potentially useful information from data. Numerous re-searchers have been developing security technology and exploring new methods to detect cyber-attacks with the DARPA 1998 dataset for Intrusion Detection and the modified versions of this dataset KDDCup99 and NSL-KDD, but until now no one have examined the performance of the Top 10 data mining algorithms selected by experts in data mining. The compared classification learning algorithms in this thesis are: C4.5, CART, k-NN and Naïve Bayes. The performance of these algorithms are compared with accuracy, error rate and average cost on modified versions of NSL-KDD train and test dataset where the instances are classified into normal and four cyber-attack categories: DoS, Probing, R2L and U2R. Additionally the most important features to detect cyber-attacks in all categories and in each category are evaluated with Weka’s Attribute Evaluator and ranked according to Information Gain. The results show that the classification algorithm with best performance on the dataset is the k-NN algorithm. The most important features to detect cyber-attacks are basic features such as the number of seconds of a network connection, the protocol used for the connection, the network service used, normal or error status of the connection and the number of data bytes sent. The most important features to detect DoS, Probing and R2L attacks are basic features and the least important features are content features. Unlike U2R attacks, where the content features are the most important features to detect attacks.