1 resultado para Cyber-amoureux
em Academic Archive On-line (Mid Sweden University
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (6)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (12)
- Applied Math and Science Education Repository - Washington - USA (8)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (18)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Bibloteca do Senado Federal do Brasil (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (8)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- DRUM (Digital Repository at the University of Maryland) (2)
- FUNDAJ - Fundação Joaquim Nabuco (8)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (39)
- Glasgow Theses Service (1)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (27)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (3)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (10)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (3)
- Scielo España (1)
- Scielo Saúde Pública - SP (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (12)
- Universidad Politécnica de Madrid (7)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Metodista de São Paulo (5)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (14)
- Université de Montréal (2)
- Université de Montréal, Canada (30)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (10)
- University of Queensland eSpace - Australia (4)
- University of Southampton, United Kingdom (14)
- University of Washington (1)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Data mining can be defined as the extraction of implicit, previously un-known, and potentially useful information from data. Numerous re-searchers have been developing security technology and exploring new methods to detect cyber-attacks with the DARPA 1998 dataset for Intrusion Detection and the modified versions of this dataset KDDCup99 and NSL-KDD, but until now no one have examined the performance of the Top 10 data mining algorithms selected by experts in data mining. The compared classification learning algorithms in this thesis are: C4.5, CART, k-NN and Naïve Bayes. The performance of these algorithms are compared with accuracy, error rate and average cost on modified versions of NSL-KDD train and test dataset where the instances are classified into normal and four cyber-attack categories: DoS, Probing, R2L and U2R. Additionally the most important features to detect cyber-attacks in all categories and in each category are evaluated with Weka’s Attribute Evaluator and ranked according to Information Gain. The results show that the classification algorithm with best performance on the dataset is the k-NN algorithm. The most important features to detect cyber-attacks are basic features such as the number of seconds of a network connection, the protocol used for the connection, the network service used, normal or error status of the connection and the number of data bytes sent. The most important features to detect DoS, Probing and R2L attacks are basic features and the least important features are content features. Unlike U2R attacks, where the content features are the most important features to detect attacks.