1 resultado para Cyber threats
em Academic Archive On-line (Mid Sweden University
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (8)
- Archive of European Integration (6)
- Aston University Research Archive (11)
- Australian Council for Educational Research (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Brock University, Canada (10)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (78)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (9)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (44)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (9)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (2)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (81)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (6)
- Instituto Politécnico do Porto, Portugal (35)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (18)
- Ministerio de Cultura, Spain (5)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (22)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (19)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad del Rosario, Colombia (80)
- Universidad Politécnica de Madrid (2)
- Universidade do Minho (12)
- Universidade dos Açores - Portugal (11)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (52)
- Université de Montréal (1)
- Université de Montréal, Canada (53)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (31)
- University of Southampton, United Kingdom (15)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Data mining can be defined as the extraction of implicit, previously un-known, and potentially useful information from data. Numerous re-searchers have been developing security technology and exploring new methods to detect cyber-attacks with the DARPA 1998 dataset for Intrusion Detection and the modified versions of this dataset KDDCup99 and NSL-KDD, but until now no one have examined the performance of the Top 10 data mining algorithms selected by experts in data mining. The compared classification learning algorithms in this thesis are: C4.5, CART, k-NN and Naïve Bayes. The performance of these algorithms are compared with accuracy, error rate and average cost on modified versions of NSL-KDD train and test dataset where the instances are classified into normal and four cyber-attack categories: DoS, Probing, R2L and U2R. Additionally the most important features to detect cyber-attacks in all categories and in each category are evaluated with Weka’s Attribute Evaluator and ranked according to Information Gain. The results show that the classification algorithm with best performance on the dataset is the k-NN algorithm. The most important features to detect cyber-attacks are basic features such as the number of seconds of a network connection, the protocol used for the connection, the network service used, normal or error status of the connection and the number of data bytes sent. The most important features to detect DoS, Probing and R2L attacks are basic features and the least important features are content features. Unlike U2R attacks, where the content features are the most important features to detect attacks.