1 resultado para texture segmentation

em Universidade Federal do Pará


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os principais objetivos deste trabalho são propor um algoritmo eficiente e o mais automático possível para estimar o que está coberto por regiões de nuvens e sombras em imagens de satélite; e um índice de confiabilidade, que seja aplicado previamente à imagem, visando medir a viabilidade da estimação das regiões cobertas pelos componentes atmosféricos usando tal algoritmo. A motivação vem dos problemas causados por esses elementos, entre eles: dificultam a identificação de objetos de imagem, prejudicam o monitoramento urbano e ambiental, e desfavorecem etapas cruciais do processamento digital de imagens para extrair informações ao usuário, como segmentação e classificação. Através de uma abordagem híbrida, é proposto um método para decompor regiões usando um filtro passa-baixas não-linear de mediana, a fim de mapear as regiões de estrutura (homogêneas), como vegetação, e de textura (heterogêneas), como áreas urbanas, na imagem. Nessas áreas, foram aplicados os métodos de restauração Inpainting por suavização baseado em Transformada Cosseno Discreta (DCT), e Síntese de Textura baseada em modelos, respectivamente. É importante salientar que as técnicas foram modificadas para serem capazes de trabalhar com imagens de características peculiares que são obtidas por meio de sensores de satélite, como por exemplo, as grandes dimensões e a alta variação espectral. Já o índice de confiabilidade, tem como objetivo analisar a imagem que contém as interferências atmosféricas e daí estimar o quão confiável será a redefinição com base no percentual de cobertura de nuvens sobre as regiões de textura e estrutura. Tal índice é composto pela combinação do resultado de algoritmos supervisionados e não-supervisionados envolvendo 3 métricas: Exatidão Global Média (EGM), Medida De Similaridade Estrutural (SSIM) e Confiança Média Dos Pixels (CM). Finalmente, verificou-se a eficácia destas metodologias através de uma avaliação quantitativa (proporcionada pelo índice) e qualitativa (pelas imagens resultantes do processamento), mostrando ser possível a aplicação das técnicas para solucionar os problemas que motivaram a realização deste trabalho.