2 resultados para resonant cavity antenna
em Universidade Federal do Pará
Resumo:
O primeiro objetivo do presente trabalho é calcular a força quântica exata que atua sobre as fronteiras de uma cavidade, bem como o comportamento exato da densidade de energia numa cavidade não estática, onde ambas as fronteiras executam movimentos prescritos arbitrários. O modelo considerado é o do campo escalar não massivo em 1 + 1 dimensões, sendo que o campo obedece à condição de Dirichlet em cada uma das fronteiras. Considerando o vácuo como estado inicial do campo, nós mostramos que a densidade de energia em um dado ponto do espaço-tempo pode ser obtida através do traçado de uma sequência de linhas nulas, conectando o valor da densidade de energia nesse ponto a um certo valor conhecido da densidade de energia em um ponto das “zonas estáticas”. O segundo objetivo é mostrar que para movimentos específicos das fronteiras, particularmente para os quais ambas voltam às suas posições iniciais em instantes múltiplos do comprimento inicial da cavidade, o método exato por nós obtido permite encontrar soluções analíticas escritas como uma expansão em série na variável que controla as amplitudes de movimento das fronteiras. Os resultados analíticos por nós obtidos são aplicáveis a uma vasta classe de movimentos, a qual inclui a grande maioria dos casos ressonantes estudados na literatura. O terceiro objetivo do presente trabalho é investigar, através dos métodos de cálculos desenvolvidos aqui, o fenômeno da interferência na energie e na densidade de energia em cavidades com duas fronteiras móveis, obtendo fórmulas genéricas para os termos de interferência respectivos.
Resumo:
In this paper, we present an analysis of the resonant response of modified triangular metallic nanoparticles with polynomial sides. The particles are illuminated by an incident plane wave and the method of moments is used to solve numerically the electromagnetic scattering problem. We investigate spectral response and near field distribution in function of the length and polynomial order of the nanoparticles. Our results show that in the analyzed wavelength range (0.5-1.8) µm these particles possess smaller number of resonances and their resonant wavelengths, near field enhancement and field confinement are higher than those of the conventional triangular particle with linear sides.