2 resultados para mechanical analysis

em Universidade Federal do Pará


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main contribution from this paper includes the hydrodynamic modeling and morphological analysis of Lake Água Preta in Belém city, Pará State, Brazil. The lake bathymetry was taken through the data provided by COSANPA (the local sanitation and water supply company) dating back to 1975, and from a 2009 field study. Both bathymetries produced two terrain elevation models, which were used for morphological analysis and hydrodynamic simulations. The morphological analysis has revealed that, from 1975 to 2009, the annual mean rate of sedimentation varies between 23,065 and 29,081 m3/year. Through this result, the sedimentation time of Lake Água Preta, from 2009, has been calculated, which varies between 295 and 381 years, maintaining the same rate of sedimentation, water consumption and pumping. The hydrodynamic model simulated the depths and velocities, showing a slight flow with velocities ranging from 0 to 33 cm/s. This flow is established between water input and output of the lake, which is used as reservoir of Belém city.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The present work uses multivariate statistical analysis as a form of establishing the main sources of error in the Quantitative Phase Analysis (QPA) using the Rietveld method. The quantitative determination of crystalline phases using x ray powder diffraction is a complex measurement process whose results are influenced by several factors. Ternary mixtures of Al2O3, MgO and NiO were prepared under controlled conditions and the diffractions were obtained using the Bragg-Brentano geometric arrangement. It was possible to establish four sources of critical variations: the experimental absorption and the scale factor of NiO, which is the phase with the greatest linear absorption coefficient of the ternary mixture; the instrumental characteristics represented by mechanical errors of the goniometer and sample displacement; the other two phases (Al2O3 and MgO); and the temperature and relative humidity of the air in the laboratory. The error sources excessively impair the QPA with the Rietveld method. Therefore it becomes necessary to control them during the measurement procedure.