2 resultados para hip replacement
em Universidade Federal do Pará
Resumo:
Mucopolysaccharidosis type I (MPS I) is a rare lysosomal disorder caused by deficiency of alpha-L-iduronidase. Few clinical trials have assessed the effect of enzyme replacement therapy (ERT) for this condition. We conducted an exploratory, open-label, non-randomized, multicenter cohort study of patients with MPS I. Data were collected from questionnaires completed by attending physicians at the time of diagnosis (T1; n = 34) and at a median time of 2.5 years later (T2; n = 24/34). The 24 patients for whom data were available at T2 were allocated into groups: A, no ERT (9 patients; median age at T1 = 36 months; 6 with severe phenotype); B, on ERT (15 patients; median age at T1 = 33 months; 4 with severe phenotype). For all variables in which there was no between-group difference at baseline, a delta of ≥ ± 20% was considered clinically relevant. The following clinically relevant differences were identified in group B in T2: lower rates of mortality and reported hospitalization for respiratory infection; lower frequency of hepatosplenomegaly; increased reported rates of obstructive sleep apnea syndrome and hearing loss; and stabilization of gibbus deformity. These changes could be due to the effect of ERT or of other therapies which have also been found more frequently in group B. Our findings suggest MPS I patients on ERT also receive a better overall care. ERT may have a positive effect on respiratory morbidity and overall mortality in patients with MPS I. Additional studies focusing on these outcomes and on other therapies should be performed.
Resumo:
Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.