2 resultados para fast Fourier-transform algorithm

em Universidade Federal do Pará


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um registro sísmico é frequentemente representado como a convolução de um pulso-fonte com a resposta do meio ao impulso, relacionada ao caminho da propagação. O processo de separação destes dois componentes da convolução é denominado deconvolução. Existe uma variedade de aproximações para o desenvolvimento de uma deconvolução. Uma das mais comuns é o uso da filtragem linear inversa, ou seja, o processamento do sinal composto, através de um filtro linear, cuja resposta de frequência é a recíproca da transformada de Fourier de um dos componentes do sinal. Obviamente, a fim de usarmos a filtragem inversa, tais componentes devem ser conhecidas ou estimadas. Neste trabalho, tratamos da aplicação a sinais sísmicos, de uma técnica de deconvolução não linear, proposta por Oppenheim (1965), a qual utiliza a teoria de uma classe de sistemas não lineares, que satisfazem um princípio generalizado de superposição, denominados de sistemas homomórficos. Tais sistemas são particularmente úteis na separação de sinais que estão combinados através da operação de convolução. O algoritmo da deconvolução homomórfica transforma o processo de convolução em uma superposição aditiva de seus componentes, com o resultado de que partes simples podem ser separadas mais facilmente. Esta classe de técnicas de filtragem representa uma generalização dos problemas de filtragem linear. O presente método oferece a considerável vantagem de que não é necessário fazer qualquer suposição prévia sobre a natureza do pulso sísmico fonte, ou da resposta do meio ao impulso, não requerendo assim, as considerações usuais de que o pulso seja de fase-mínima e que a distribuição dos impulsos seja aleatória, embora a qualidade dos resultados obtidos pela análise homomórfica seja muito sensível à razão sinal/ruído, como demonstrado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modelagem do mCSEM é feita normalmente no domínio da frequência, desde sua formulação teórica até a análise dos resultados, devido às simplificações nas equações de Maxwell, possibilitadas quando trabalhamos em um regime de baixa frequência. No entanto, a abordagem através do domínio do tempo pode em princípio fornecer informação equivalente sobre a geofísica da subsuperfície aos dados no domínio da frequência. Neste trabalho, modelamos o mCSEM no domínio da frequência em modelos unidimensionais, e usamos a transformada discreta de Fourier para obter os dados no domínio do tempo. Simulamos ambientes geológicos marinhos com e sem uma camada resistiva, que representa um reservatório de hidrocarbonetos. Verificamos que os dados no domínio do tempo apresentam diferenças quando calculados para os modelos com e sem hidrocarbonetos em praticamente todas as configurações de modelo. Calculamos os resultados considerando variações na profundidade do mar, na posição dos receptores e na resistividade da camada de hidrocarbonetos. Observamos a influência da airwave, presente mesmo em profundidades oceânicas com mais de 1000m, e apesar de não ser possível uma simples separação dessa influência nos dados, o domínio do tempo nos permitiu fazer uma análise de seus efeitos sobre o levantamento. Como parte da preparação para a modelagem em ambientes 2D e 3D, fazemos também um estudo sobre o ganho de desempenho pelo uso do paralelismo computacional em nossa tarefa.