2 resultados para construction of scale, clinical severity, skin photoaging, face, content validity

em Universidade Federal do Pará


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To analyze cytokine gene expression in keratinocytes from patients with systemic lupus erythematosus (SLE). INTRODUCTION: Keratinocytes represent 95% of epidermal cells and can secrete several cytokines. METHODS: Keratinocytes were obtained by laser microdissection from 21 patients with SLE (10 discoid and 11 acute lesions) at involved and uninvolved sites. All patients were receiving a low/moderate prednisone dose and 18 were receiving chloroquine diphosphate. IL-2, IL-5, TNF-α and IFN-γ gene expression was evaluated by real-time PCR and expressed as the ratio (R) to a pool of skin samples from 12 healthy volunteers. RESULTS: Heterogeneity in cytokine gene expression was found among patients with SLE. Eighteen of 38 valid SLE samples (47%) presented overexpression (R>1) of at least one cytokine. Lesional skin samples tended to show higher cytokine expression than samples from uninvolved skin (p = 0.06). IL-5 and IFN-γ were the most commonly overexpressed cytokines. Samples with cytokine overexpression corresponded to more extensive and severe lesions. Prednisone dose did not differ between samples without cytokine overexpression (15.71±3.45 mg/day) and those with overexpressed cytokines (12.68±5.41 mg/day) (p = 0.216). Samples from all patients not receiving diphosphate chloroquine had at least one overexpressed cytokine. CONCLUSIONS: The heterogeneous keratinocyte cytokine gene expression reflects the complex immunological and inflammatory background in SLE. Patients with severe/extensive skin lesions showed a higher frequency of cytokine gene overexpression. Increased IFN-γ and IL-5 expression suggests that Th1 and Th2 cells are involved in SLE skin inflammation. The possibility that prednisone and antimalarial drugs may have contributed to low cytokine gene expression in some samples cannot be ruled out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: The present work uses multivariate statistical analysis as a form of establishing the main sources of error in the Quantitative Phase Analysis (QPA) using the Rietveld method. The quantitative determination of crystalline phases using x ray powder diffraction is a complex measurement process whose results are influenced by several factors. Ternary mixtures of Al2O3, MgO and NiO were prepared under controlled conditions and the diffractions were obtained using the Bragg-Brentano geometric arrangement. It was possible to establish four sources of critical variations: the experimental absorption and the scale factor of NiO, which is the phase with the greatest linear absorption coefficient of the ternary mixture; the instrumental characteristics represented by mechanical errors of the goniometer and sample displacement; the other two phases (Al2O3 and MgO); and the temperature and relative humidity of the air in the laboratory. The error sources excessively impair the QPA with the Rietveld method. Therefore it becomes necessary to control them during the measurement procedure.