2 resultados para Visual identification tasks

em Universidade Federal do Pará


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Do capuchin monkeys respond to photos as icons? Do they discriminate photos of capuchin monkeys' faces? Looking for answers to these questions we trained three capuchin monkeys in simple and conditional discrimination tasks and tested the discriminations when comparison stimuli were partially covered. Three capuchin monkeys experienced in simultaneous simple discrimination and IDMTS were trained with repeated shifts of simple discriminations (RSSD), with four simultaneous choices, and IDMTS (1 s delay, 4 choices) with pictures of known capuchins monkeys' faces. All monkeys did discriminate the pictures in both procedures. Performances in probes with partial masks with one fourth of the stimulus hidden were consistent with baseline level. Errors occurred when a picture similar to the correct one was available among the comparison stimuli, when the covered part was the most distinct, or when pictures displayed the same monkey. Capuchin monkeys do match pictures of capuchin monkeys' faces to the sample. The monkeys treated different pictures of the same monkey as equivalent, suggesting that they respond to the pictures as icons, although this was not true to pictures of other monkeys. Subsequent studies may bring more evidence that capuchin monkeys treat pictures as depictions of real scenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual perception and action are strongly linked with parallel processing channels connecting the retina, the lateral geniculate nucleus, and the input layers of the primary visual cortex. Achromatic vision is provided by at least two of such channels formed by the M and P neurons. These cell pathways are similarly organized in primates having different lifestyles, including species that are diurnal, nocturnal, and which exhibit a variety of color vision phenotypes. We describe the M and P cell properties by 3D Gábor functions and their 3D Fourier transform. The M and P cells occupy different loci in the Gábor information diagram or Fourier Space. This separation allows the M and P pathways to transmit visual signals with distinct 6D joint entropy for space, spatial frequency, time, and temporal frequency. By combining the M and P impacts on the cortical neurons beyond V1 input layers, the cortical pathways are able to process aspects of visual stimuli with a better precision than it would be possible using the M or P pathway alone. This performance fulfils the requirements of different behavioral tasks.