3 resultados para Transferrin Receptors

em Universidade Federal do Pará


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As classificações tradicionais envolvendo os macacos da infraordem Platyrrhini, principalmente baseadas em características morfológicas, têm sido contestadas por dados moleculares recentes. A subfamília Callitrichinae (Platyrrhine, Primates) engloba um diverso grupo de espécies, muitas das quais consideradas em perigo de extinção. A presente análise de duas regiões do DNA, um gene mitocondrial (ND1) e um gene nuclear (regiões intrônicas da transferrina), sugerem que Callithrix pygmaea apresenta variabilidade suficiente para justificar a existência de subespécies ou até mesmo de espécies distintas. As árvores filogenéticas baseadas na região do ND1 indicam que esta espécie está relacionada mais proximamente aos marmosets amazônicos do que aos da mata Atlântica. Estes resultados reabrem a discussão sobre diversidade e programas de conservação baseados apenas em classificações taxonômicas tradicionais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the participation of A1 or A2 receptors in the gonadotrope and their role in the regulation of LH and FSH secretion in adult rat hemipituitary preparations, using adenosine analogues. A dose-dependent inhibition of LH and FSH secretion was observed after the administration of graded doses of the R-isomer of phenylisopropyladenosine (R-PIA; 1 nM, 10 nM, 100 nM, 1 µM and 10 µM). The effect of R-PIA (10 nM) was blocked by the addition of 8-cyclopentyltheophylline (CPT), a selective A1 adenosine receptor antagonist, at the dose of 1 µM. The addition of an A2 receptor-specific agonist, 5-N-methylcarboxamidoadenosine (MECA), at the doses of 1 nM to 1 µM had no significant effect on LH or FSH secretion, suggesting the absence of this receptor subtype in the gonadotrope. However, a sharp inhibition of the basal secretion of these gonadotropins was observed after the administration of 10 µM MECA. This effect mimicked the inhibition induced by R-PIA, supporting the hypothesis of the presence of A1 receptors in the gonadotrope. R-PIA (1 nM to 1 µM) also inhibited the secretion of LH and FSH induced by phospholipase C (0.5 IU/ml) in a dose-dependent manner. These results suggest the presence of A1 receptors and the absence of A2 receptors in the gonadotrope. It is possible that the inhibition of LH and FSH secretion resulting from the activation of A1 receptors may have occurred independently of the increase in membrane phosphoinositide synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5), while the Bmax value for 125I-a-bungarotoxin was reduced. Despite the presence of a8-like immunoreactivity at DIV4, functional responses mediated by a-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM) was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM) blocked the response to acetylcholine (3.0 nM-2.0 µM) only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the a-bungarotoxin-sensitive response at DIV5. Therefore, a-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an a-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by a-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express a-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.