2 resultados para Training and Function Description Analysis

em Universidade Federal do Pará


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural retina is a highly complex tissue composed of excitatory and inhibitory neurons and glial cells. Glutamate, the main excitatory neurotransmitter, mediates information transfer from photoreceptors, bipolar cells, and ganglion cells, whereas interneurons, mainly amacrine and horizontal cells, use γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter. In this review we place an emphasis on glutamate and GABA transporters as highly regulated molecules that play fundamental roles in neurotransmitter clearance, neurotransmitter release, and oxidative stress. We pharmacologically characterized glutamate transporters in chicken retina cells and identified two glutamate transporters: one Na+-dependent transporter and one Na+-independent transporter. The Na+-dependent uptake system presented characteristics related to the high-affinity xAG- system (EAAT1), and the Na+-independent uptake system presented characteristics related to the xCG- system, which highly contributes to glutamate transport in the retina. Glutamate shares the xCG- system with another amino acid, L-cysteine, suggesting the possible involvement of glutathione. Both transporter proteins are present mainly in Müller glial cells. GABA transporters (GATs) mediate high-affinity GABA uptake from the extracellular space and terminate the synaptic action of GABA in the central nervous system. GABA transporters can be modulated by molecules that act on specific sites to promote transporter phosphorylation and dephosphorylation. In addition to a role in the clearance of GABA, GATs may also release GABA through a reverse transport mechanism. In the chicken retina, a GAT-1 blocker, but not GAT2/3 blocker, was shown to inhibit GABA uptake, suggesting that GABA release from retina cells is mainly mediated by a GAT-1-like transporter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studied a new protocol for organogenic calli induction and characterization of the morphology and ultrastructure of callogenesis in leaf explants of Passiflora gibertii N. E. Brown, a native passion fruit species from Brazil. Calli induction was performed in different growth conditions (light and dark), different MS medium salt concentrations (MS and MS half strength) and the presence or absence of coconut water. The leaf explants maintained in the dark were more responsive to bud formation. In order to reduce spending on in vitro culture, the most suitable induction medium for P. gibertii organogenesis could, therefore be the MS half strength salt concentration medium maintained in the dark. The addition of coconut water to the culture medium was essential for both calli induction and bud formation. The morphological and ultrastructural features of the organogenic calli were isodiametric cells, characterized by an organized cellular system, nucleus with prominent nucleoli, presence of starch grains and dense cytoplasm rich in endoplasmic reticulum. The scanning electron microscopy demonstrated that buds were present on these calli.