6 resultados para Stimulus-secretion coupling
em Universidade Federal do Pará
Resumo:
A "second generation" matching-to-sample procedure that minimizes past sources of artifacts involves (1) successive discrimination between sample stimuli, (2) stimulus displays ranging from four to 16 comparisons, (3) variable stimulus locations to avoid unwanted stimulus-location control, and (4) high accuracy levels (e.g., 90% correct on a 16-choice task in which chance accuracy is 6%). Examples of behavioral engineering with experienced capuchin monkeys included four-choice matching problems with video images of monkeys with substantially above-chance matching in a single session and 90% matching within six sessions. Exclusion performance was demonstrated by interspersing non-identical sample-comparison pairs within a baseline of a nine-comparison identity-matching-to-sample procedure with pictures as stimuli. The test for exclusion presented the newly "mapped" stimulus in a situation in which exclusion was not possible. Degradation of matching between physically non-identical forms occurred while baseline identity accuracy was sustained at high levels, thus confirming that Cebus cf. apella is capable of exclusion. Additionally, exclusion performance when baseline matching relations involved non-identical stimuli was shown.
Resumo:
We investigated the participation of A1 or A2 receptors in the gonadotrope and their role in the regulation of LH and FSH secretion in adult rat hemipituitary preparations, using adenosine analogues. A dose-dependent inhibition of LH and FSH secretion was observed after the administration of graded doses of the R-isomer of phenylisopropyladenosine (R-PIA; 1 nM, 10 nM, 100 nM, 1 µM and 10 µM). The effect of R-PIA (10 nM) was blocked by the addition of 8-cyclopentyltheophylline (CPT), a selective A1 adenosine receptor antagonist, at the dose of 1 µM. The addition of an A2 receptor-specific agonist, 5-N-methylcarboxamidoadenosine (MECA), at the doses of 1 nM to 1 µM had no significant effect on LH or FSH secretion, suggesting the absence of this receptor subtype in the gonadotrope. However, a sharp inhibition of the basal secretion of these gonadotropins was observed after the administration of 10 µM MECA. This effect mimicked the inhibition induced by R-PIA, supporting the hypothesis of the presence of A1 receptors in the gonadotrope. R-PIA (1 nM to 1 µM) also inhibited the secretion of LH and FSH induced by phospholipase C (0.5 IU/ml) in a dose-dependent manner. These results suggest the presence of A1 receptors and the absence of A2 receptors in the gonadotrope. It is possible that the inhibition of LH and FSH secretion resulting from the activation of A1 receptors may have occurred independently of the increase in membrane phosphoinositide synthesis.
Resumo:
We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N- methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.
Resumo:
In previous studies, we demonstrated biphasic purinergic effects on prolactin (PRL) secretion stimulated by an adenosine A2 agonist. In the present study, we investigated the role of the activation of adenosine A1 receptors by (R)-N6-(2-phenylisopropyl)adenosine (R-PIA) at the pituitary level in in vitro PRL secretion. Hemipituitaries (one per cuvette in five replicates) from adult male rats were incubated. Administration of R-PIA (0.001, 0.01, 0.1, 1, and 10 µM) induced a reduction of PRL secretion into the medium in a U-shaped dose-response curve. The maximal reduction was obtained with 0.1 µM R-PIA (mean ± SEM, 36.01 ± 5.53 ng/mg tissue weight (t.w.)) treatment compared to control (264.56 ± 15.46 ng/mg t.w.). R-PIA inhibition (0.01 µM = 141.97 ± 15.79 vs control = 244.77 ± 13.79 ng/mg t.w.) of PRL release was blocked by 1 µM cyclopentyltheophylline, a specific A1 receptor antagonist (1 µM = 212.360 ± 26.560 ng/mg t.w.), whereas cyclopentyltheophylline alone (0.01, 0.1, 1 µM) had no effect. R-PIA (0.001, 0.01, 0.1, 1 µM) produced inhibition of PRL secretion stimulated by both phospholipase C (0.5 IU/mL; 977.44 ± 76.17 ng/mg t.w.) and dibutyryl cAMP (1 mM; 415.93 ± 37.66 ng/mg t.w.) with nadir established at the dose of 0.1 µM (225.55 ± 71.42 and 201.9 ± 19.08 ng/mg t.w., respectively). Similarly, R-PIA (0.01 µM) decreased (242.00 ± 24.00 ng/mg t.w.) the PRL secretion stimulated by cholera toxin (0.5 mg/mL; 1050.00 ± 70.00 ng/mg t.w.). In contrast, R-PIA had no effect (468.00 ± 34.00 ng/mg t.w.) on PRL secretion stimulation by pertussis toxin (0.5 mg/mL; 430.00 ± 26.00 ng/mg t.w.). These results suggest that inhibition of PRL secretion after A1 receptor activation by R-PIA is mediated by a Gi protein-dependent mechanism.
Resumo:
Teaching the first instances of arbitrary matching-to-sample to nonhumans can prove difficult and time consuming. Stimulus control relations may develop that differ from those intended by the experimentereven when stimulus control shaping procedures are used. We present, in this study, efforts to identify sources of shaping program failure with a capuchin monkey. Procedures began with a baseline of identity matching. During subsequent shaping trials, compound comparison stimuli had two componentsone identical to and another different from the sample. The identical component was eliminated gradually by removing portions across trials (i.e., subtracting stimulus elements). The monkey performed accurately throughout shaping. At a late stage in the program, probe tests were conducted: (1) arbitrary matching trials that had all elements of the identical comparison removed and (2) other trials that included residual elements. During the test, the monkey performed at low levels on the former trials and higher levels on the latter. These results suggested that higher accuracy was due merely to continued control by the residual elements: the target arbitrary matching relations had not been learned. Thus, it appears that procedures that gradually transform identity matching baselines into arbitrary matching can fail by inadvertently shaping restricted control by residual elements. Subsequent probes at the end of the shaping series showed a successful transfer of stimulus control from identity to arbitrary matching after further programming steps apparently overcame the restricted stimulus control.
Resumo:
A regulação fina do volume e osmolaridade dos líquidos corporais é fundamental para a sobrevivência. Qualquer variação na composição do meio interno ativa mecanismos comportamentais, neurais e hormonais compensatórios que controlam a ingestão e excreção de água e eletrólitos a fim de manter a homeostase hidroeletrolítica. Alterações na faixa de 1-2% na osmolaridade sanguínea estimulam a liberação de arginina vasopressina (AVP) que resulta em antidiurese além de ocitocina (OT) e peptídeo natriurético atrial (ANP) que promovem a natriurese. Trabalhos realizados em nosso laboratório utilizando o modelo experimental de expansão do volume extracelular (EVEC) mostraram ativação de neurônios magnocelulares ocitocinérgicos localizados no núcleo paraventricular (PVN) e núcleo supra-óptico (SON) responsáveis pela secreção de OT e AVP, igualmente alteradas em resposta a este estímulo. A participação do sistema nervoso simpático nestas condições tem sido levantada. Projeções medulares e tronco-encefálicas (simpáticas) para o hipotálamo poderiam atuar de forma seletiva inibindo sinalizações para a ingestão e estimulando sinalizações para excreção de água e eletrólitos. O papel de vias noradrenérgicas tronco-encefálicas nesta regulação ainda precisa ser mais bem estabelecido. Assim sendo, objetivamos neste estudo esclarecer o papel do sistema nervoso simpático (via noradrenérgicas) na regulação das alterações induzidas pelo modelo de EVEC, analisando por cromatografia líquida de alta eficácia o conteúdo de noradrenalina (NA), adrenalina (AD) e serotonina (5-HT) em estruturas do tronco cerebral como núcleo do trato solitário (NTS), bulbo rostro-ventro lateral (RVLM), locus coeruleus (LC) e núcleo dorsal da rafe (NDR) e estruturas hipotalâmicas como SON e PVN. Procuramos ainda, através de estudos imunocitoquímicos determinar alterações no padrão de ativação neuronal pela análise de Fos-TH ou Fos-5HT nas estruturas acima mencionadas em condições experimentais nas quais são induzidas alterações do volume do líquido extracelular.