7 resultados para Statistical models of Box-Jenkins. Artificial neural networks (ANN). Oil flow curve
em Universidade Federal do Pará
Resumo:
A crescente utilização dos serviços de telecomunicações principalmente sem fio tem exigido a adoção de novos padrões de redes que ofereçam altas taxas de transmissão e que alcance um número maior de usuários. Neste sentido o padrão IEEE 802.16, no qual é baseado o WiMAX, surge como uma tecnologia em potencial para o fornecimento de banda larga na próxima geração de redes sem fio, principalmente porque oferece Qualidade de Serviço (QoS) nativamente para fluxos de voz, dados e vídeo. A respeito das aplicações baseadas vídeo, tem ocorrido um grande crescimento nos últimos anos. Em 2011 a previsão é que esse tipo de conteúdo ultrapasse 50% de todo tráfego proveniente de dispositivos móveis. Aplicações do tipo vídeo têm um forte apelo ao usuário final que é quem de fato deve ser o avaliador do nível de qualidade recebida. Diante disso, são necessárias novas formas de avaliação de desempenho que levem em consideração a percepção do usuário, complementando assim as técnicas tradicionais que se baseiam apenas em aspectos de rede (QoS). Nesse sentido, surgiu a avaliação de desempenho baseada Qualidade de Experiência (QoE) onde a avaliação do usuário final em detrimento a aplicação é o principal parâmetro mensurado. Os resultados das investigações em QoE podem ser usados como uma extensão em detrimento aos tradicionais métodos de QoS, e ao mesmo tempo fornecer informações a respeito da entrega de serviços multimídias do ponto de vista do usuário. Exemplos de mecanismos de controle que poderão ser incluídos em redes com suporte a QoE são novas abordagens de roteamento, processo de seleção de estação base e tráfego condicionado. Ambas as metodologias de avaliação são complementares, e se usadas de forma combinada podem gerar uma avaliação mais robusta. Porém, a grande quantidade de informações dificulta essa combinação. Nesse contexto, esta dissertação tem como objetivo principal criar uma metodologia de predição de qualidade de vídeo em redes WiMAX com uso combinado de simulações e técnicas de Inteligência Computacional (IC). A partir de parâmetros de QoS e QoE obtidos através das simulações será realizado a predição do comportamento futuro do vídeo com uso de Redes Neurais Artificiais (RNA). Se por um lado o uso de simulações permite uma gama de opções como extrapolação de cenários de modo a imitar as mesmas situações do mundo real, as técnicas de IC permitem agilizar a análise dos resultados de modo que sejam feitos previsões de um comportamento futuro, correlações e outros. No caso deste trabalho, optou-se pelo uso de RNAs uma vez que é a técnica mais utilizada para previsão do comportamento, como está sendo proposto nesta dissertação.
Identificação e estimação de ruído em redes DSL: uma abordagem baseada em inteligência computacional
Resumo:
Este trabalho propõe a utilização de técnicas de inteligência computacional objetivando identificar e estimar a potencia de ruídos em redes Digital Subscriber Line ou Linhas do Assinante Digital (DSL) em tempo real. Uma metodologia baseada no Knowledge Discovery in Databases ou Descobrimento de Conhecimento em Bases de Dados (KDD) para detecção e estimação de ruídos em tempo real, foi utilizada. KDD é aplicado para selecionar, pré-processar e transformar os dados antes da etapa de aplicação dos algoritmos na etapa de mineração de dados. Para identificação dos ruídos o algoritmo tradicional backpropagation baseado em Redes Neurais Artificiais (RNA) é aplicado objetivando identificar o tipo de ruído em predominância durante a coleta das informações do modem do usuário e da central. Enquanto, para estimação o algoritmo de regressão linear e o algoritmo híbrido composto por Fuzzy e regressão linear foram aplicados para estimar a potência em Watts de ruído crosstalk ou diafonia na rede. Os resultados alcançados demonstram que a utilização de algoritmos de inteligência computacional como a RNA são promissores para identificação de ruídos em redes DSL, e que algoritmos como de regressão linear e Fuzzy com regressão linear (FRL) são promissores para a estimação de ruídos em redes DSL.
Resumo:
O Município de Marabá- PA, situado na região Amazônica, sudeste do Estado do Pará, sofre anualmente com eventos de enchentes, ocasionados pelo aumento periódico do rio Tocantins e pela situação de vulnerabilidade da população que reside em áreas de risco. A defesa civil estadual e municipal anualmente planeja e prepara equipes para ações de defesa no município. Nesta fase o monitoramento e previsão de eventos de enchentes são importantes. Portanto, com o objetivo de diminuir erros nas previsões hidrológicas para o Município de Marabá, desenvolveu-se um modelo estocástico para previsão de nível do rio Tocantins, baseado na metodologia de Box e Jenkins. Utilizou os dados de níveis diários observados nas estações hidrológicas de Marabá e Carolina e Conceição do Araguaia da Agência Nacional de Águas (ANA), do período de 01/12/ 2008 a 31/03/2011. Efetuou-se o ajustamento de três modelos (Mt, Nt e Yt), através de diferentes aplicativos estatísticos: o SAS e o Gretl, usando diferentes interpretações do comportamento das séries para gerar as equações dos modelos. A principal diferença entre os aplicativos é que no SAS usa o modelo de função de transferência na modelagem. Realizou-se uma classificação da variabilidade do nível do rio, através da técnica dos Quantis para o período de 1972 a 2011, examinando-se apenas as categorizações de níveis ACIMA e MUITO ACIMA do normal. Para análise de impactos socioeconômicos foram usados os dados das ações da Defesa Civil Estado do Pará nas cheias de 2009 e 2011. Os resultados mostraram que o número de eventos de cheias com níveis MUITO ACIMA do normal, geralmente, podem estar associados a eventos de La Niña. Outro resultado importante: os modelos gerados simularam muito bem o nível do rio para o período de sete dias (01/04/2011 a 07/04/2011). O modelo multivariado Nt (com pequenos erros) representou o comportamento da série original, subestimando os valores reais nos dias 3, 4 e 5 de abril de 2011, com erro máximo de 0,28 no dia 4. O modelo univariado (Yt) teve bons resultados nas simulações com erros absolutos em torno de 0,12 m. O modelo com menor erro absoluto (0,08m) para o mesmo período foi o modelo Mt, desenvolvido pelo aplicativo SAS, que interpreta a série original como sendo não linear e não estacionária. A análise quantitativa dos impactos fluviométricos, ocorridos nas enchentes de 2009 e 2011 na cidade de Marabá, revelou em média que mais de 4 mil famílias sofrem com estes eventos, implicado em gastos financeiros elevados. Logo, conclui-se que os modelos de previsão de níveis são importantes ferramentas que a Defesa Civil, utiliza no planejamento e preparo de ações preventivas para o município de Marabá.
Resumo:
A permeabilidade e a porosidade são duas das mais importantes propriedades petrofísicas para a qualificação dos reservatórios de óleo e gás. A porosidade está relacionada à capacidade de armazenamento de fluidos e a permeabilidade, com a capacidade de produção destes fluidos. Suas medidas são, normalmente, realizadas em laboratório, através de testemunhos da rocha. Esses processos têm custos elevados e nem todos os poços são testemunhados. As estimativas da permeabilidade e da porosidade são de fundamental importância para os engenheiros de reservatório e geofísicos, uma vez que seus valores podem definir a completação ou não de um poço petrolífero. O perfil de porosidade e sua relação com o perfil de densidade, é bem conhecida na geofísica de poço. No entanto, existem poucas relações quantitativas e/ou qualitativas entre a porosidade e a permeabilidade, como por exemplo as relações de Kozeny. Sendo assim, este trabalho busca o estabelecimento do perfil de permeabilidade e do perfil de porosidade, a partir de informações do perfil de densidade. Para tanto, buscamos a relação entre a propriedade física da rocha (densidade) e as propriedades petrofísicas: permeabilidade e porosidade, utilizando como metodologia à técnica de redes neurais artificiais, como a rede neural artificial com função de base radial. A obtenção da permeabilidade e da porosidade a partir da rede neural artificial, que possui como entrada a informação da densidade possibilita um menor custo para a aquisição dessas importantes informações petrofísicas, permite ao intérprete de perfis de poço optar ou não pela exploração de uma unidade estudada, além de uma visão mais completa do reservatório. Os procedimentos para a estimativa da permeabilidade e da porosidade estão direcionados para uma única formação, mas os intérpretes de perfis poderão aplicar a diretriz apresentada no programa de rede neural artificial com função de base radial, utilizando a estimativa dessas propriedades petrofísicas para outras formações, inclusive de outros campos petrolíferos. Portanto, recomenda-se a utilização de um conjunto de dados completo, com quantidade de dados suficientes de um mesmo poço, a fim de viabilizar corretamente a melhor interpretação.
Resumo:
In experimental psychopathology, construct validity is usually enhanced by addressing theories from other fields in its nomological network. In the field of anxiety research, this construct is related to antipredator behavior, conserved across phylogeny in its functions and neural basis, but not necessarily on its topography. Even though the relations between behavioral models of anxiety and statements from behavioral ecology and evolutionary biology are commonly made in anxiety research, these are rarely tested, at least explicitly. However, in order to increase construct validity in experimental anxiety, testing predictions from those theories is highly desirable. This article discusses these questions, suggesting a few ways in which behavioral ecological and evolutionary hypotheses of anxiety-like behavior may be tested.
Resumo:
O conhecimento prévio do valor da carga é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Este trabalho apresenta os resultados de um estudo investigativo da aplicação de Redes Neurais Artificiais do tipo Perceptron Multicamadas com treinamento baseado na Teoria da Informação para o problema de Previsão de Carga a curto prazo. A aprendizagem baseada na Teoria da Informação se concentra na utilização da quantidade de informação (Entropia) para treinamento de uma rede neural artificial. Dois modelos previsores são apresentados sendo que os mesmos foram desenvolvidos a partir de dados reais fornecidos por uma concessionária de energia. Para comparação e verificação da eficiência dos modelos propostos um terceiro modelo foi também desenvolvido utilizando uma rede neural com treinamento baseado no critério clássico do erro médio quadrático. Os resultados alcançados mostraram a eficiência dos sistemas propostos, que obtiveram melhores resultados de previsão quando comparados ao sistema de previsão baseado na rede treinada pelo critério do MSE e aos sistemas previsores já apresentados na literatura.
Resumo:
As redes neurais artificiais têm provado serem uma poderosa técnica na resolução de uma grande variedade de problemas de otimização. Nesta dissertação é desenvolvida uma nova rede neural, tipo recorrente, sem realimentação (self-feedback loops) e sem neurônios ocultos, para o processamento do sinal sísmico, para fornecer a posição temporal, a polaridade e as amplitudes estimadas dos refletores sísmicos, representadas pelos seus coeficientes de reflexão. A principal característica dessa nova rede neural consiste no tipo de função de ativação utilizada, a qual permite três possíveis estados para o neurônio. Busca-se estimar a posição dos refletores sísmicos e reproduzir as verdadeiras polaridades desses refletores. A idéia básica desse novo tipo de rede, aqui denominada rede neural discreta (RND), é relacionar uma função objeto, que descreve o problema geofísico, com a função de Liapunov, que descreve a dinâmica da rede neural. Deste modo, a dinâmica da rede leva a uma minimização local da sua função de Liapunov e consequentemente leva a uma minimização da função objeto. Assim, com uma codificação conveniente do sinal de saída da rede tem-se uma solução do problema geofísico. A avaliação operacional da arquitetura desta rede neural artificial é realizada em dados sintéticos gerados através do modelo convolucional simples e da teoria do raio. A razão é para explicar o comportamento da rede com dados contaminados por ruído, e diante de pulsos fonte de fases mínima, máxima e misturada.