4 resultados para Silicon nitride coating
em Universidade Federal do Pará
Resumo:
Basic sodalite was successfully synthesized by hydrothermal method using kaolin waste as source of Aluminum and Silicon. This waste is mainly composed by kaolinite and is produced in large amount by kaolin processing industries for paper coating from the Amazon region. Initially, the waste has been calcined at 700 ºC for 2 h and then reacted with the following solutions: Na2CO3 and mixture of Na2CO3 + NaOH to 150 ºC with autogenous pressure for 24 h. The raw materials and transformed materials were characterized by XRD, FTIR and SEM. In both studied media, well-crystallized, basic sodalite was the only phase synthesized, while in the literature usually a mixture of zeolites is obtained.
Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum
Resumo:
The synthesis of zeolite NaP using kaolin waste, from the Amazon region, as a predominant source of silicon and aluminum has been studied. The zeolitisation process occurred in hydrothermal conditions using static autoclaving and the effects of time, temperature, and the Si/Al ratio were investigated. The starting material and the phases formed as reaction products were characterized by XRD, SEM and FTIR. The results showed that pure zeolite NaP is hydrothermally synthesized, at 100 °C for 20 hours, using metakaolin waste material in alkaline medium in presence of additional silica. The XRD and SEM analyses indicate that the synthesized zeolite presents good crystallinity.
Resumo:
Materiais zeolíticos foram sintetizados utilizando como fonte principal de silício e alumínio um rejeito industrial gerado durante o beneficiamento do caulim para cobertura de papel; o material de partida e as fases formadas como produtos de reação foram caracterizados por difração de raios X, microscopia eletrônica de varredura e espectroscopia de refletância difusa no infravermelho com transformada de Fourier. O processo de síntese ocorreu em condições hidrotermais através de autoclavagem estática e os efeitos tempo-temperatura, assim como também as relações Si/Al e Na/Al foram considerados. Os resultados mostram que na metodologia desenvolvida com o rejeito de caulim, inicialmente calcinado a 700 ºC por 2 h, submetido em seguida à reação em meio alcalino a 90 ºC por 48 h na presença de uma fonte adicional de sílica foi obtida zeólita do tipo faujasita com boa cristalinidade como fase predominante no produto de síntese.
Resumo:
The pristine boron nitride nanotubes have a large direct band gap around 5 eV. This band gap can be engineered by doping. We investigate electronic structure of the doped hexagonal boron nitride (5,5) nanotubes using the linearized augmented cylindrical wave method. In particular, this work focuses on systematical study of the band gap and the density of states around the Fermi-level when the nanotubes are doped by intrinsic impurities of two substitutional boron atoms in a super cell and a comparative analysis of the relative stability of three structures studied here. This corresponds to 3.3% of impurity concentration. We calculate 29 configurations of the nanotubes with different positions of the intrinsic impurities in the nanotube. The band gap and density of states around the Fermi level show strong dependence on the relative positions of the impurity atoms. The two defect sub bands called D∏(B) appear in the band gap of the pristine nanotube. The doped nanotubes possess p-type semiconductor properties with the band gap of 1.3-1.9 eV.