5 resultados para Signature Verification, Forgery Detection, Fuzzy Modeling
em Universidade Federal do Pará
Resumo:
Este trabalho descreve um sistema de análise de dados com a finalidade de gerar um sistema de controle utilizando técnica inteligente para adição de fluoreto de alumínio (AlF3) em fornos de redução de alumínio. O projeto baseia-se nos conceitos de lógica fuzzy, nos quais o conhecimento acumulado pelo especialista do processo é traduzido de maneira qualitativa em um conjunto de regras linguísticas do tipo SE
Resumo:
Em um sistema elétrico existem vários circuitos e equipamentos industriais que se comportam como dispositivos não-lineares. Esse comportamento geram sinais que causam distorções dentro desse sistema. Essas distorções são chamadas de Harmônicas, que calculada de forma ampla nos fornece o valor do THD (do inglês Total Harmonic Distortion ou Distorção Harmônica Total). Este trabalho apresenta uma das várias soluções para minimizar esse indicador através da detecção por um algoritmo computacional instalado no medidor de THD apropriado e pela utilização de filtros harmônicos passivos. Este algoritmo computacional detecta e calcula em quais frequências o valor do THD está elevado em comparação a um índice normativo definido utilizando para isso a Lógica Fuzzy. Uma vez definido a necessidade da aplicação do filtro harmônico esse será projetado pelo algoritmo computacional. O filtro harmônico entregado neste trabalho será o filtro passivo devido a sua fácil instalação e ao seu baixo custo. Dessa forma, o algoritmo computacional proposto funciona no início da medição do THD, no equipamento medidor, indicando uma faixa classificatória de THD medido, utilizando para isso a Lógica Fuzzy, identifica a necessidade ou não da instalação do filtro harmônico passivo e seu projeto, e finaliza efetuando um novo cálculo de THD.
Resumo:
Este trabalho apresenta uma proposta de aplicação de uma metodologia de lógica fuzzy à gestão de estoques de uma instituição pública da administração federal, localizada em Manaus-AM. Inicialmente, é realizada uma revisão da literatura sobre logística e gestão de suprimentos. Em seguida, são abordados assuntos relativos à gestão de estoques. Após isto, são discutidos tópicos referentes à Lógica Fuzzy. A metodologia proposta possibilitará um melhor controle do estoque, uma vez que serão substituídos os tradicionais métodos quantitativos de gerenciamento de estoques. Os dados utilizados foram coletados diretamente do almoxarifado da instituição em estudo, e referem-se à movimentação de estoque de um determinado item, durante o ano de 2009. A utilização da lógica fuzzy tem despertado, cada vez mais, a atenção de pesquisadores de diversas áreas do conhecimento, sendo, porém, que o grande desafio que se coloca aos mesmos é a modelagem dos dados coletados, em virtude do apoio computacional necessário a sua aplicação. A interação com os valores observados, operados pelas regras da lógica fuzzy permite um melhor controle das ações de um almoxarifado, tais como atendimento, reposição e licitação, uma vez que lida com situações de incerteza e subjetividade. A metodologia desenvolvida mostra-se apta a indicar de uma forma melhor a realização das citadas ações, sendo capaz de operacionalizar de forma automatizada o controle e o gerenciamento do estoque.
Resumo:
Esta dissertação apresenta uma técnica para detecção e diagnósticos de faltas incipientes. Tais faltas provocam mudanças no comportamento do sistema sob investigação, o que se reflete em alterações nos valores dos parâmetros do seu modelo matemático representativo. Como plataforma de testes, foi elaborado um modelo de um sistema industrial em ambiente computacional Matlab/Simulink, o qual consiste em uma planta dinâmica composta de dois tanques comunicantes entre si. A modelagem dessa planta foi realizada através das equações físicas que descrevem a dinâmica do sistema. A falta, a que o sistema foi submetido, representa um estrangulamento gradual na tubulação de saída de um dos tanques. Esse estrangulamento provoca uma redução lenta, de até 20 %, na seção desse tubo. A técnica de detecção de falta foi realizada através da estimação em tempo real dos parâmetros de modelos Auto-regressivos com Entradas Exógenas (ARX) com estimadores Fuzzy e de Mínimos Quadrados Recursivos. Já, o diagnóstico do percentual de entupimento da tubulação foi obtido por um sistema fuzzy de rastreamento de parâmetro, realimentado pela integral do resíduo de detecção. Ao utilizar essa metodologia, foi possível detectar e diagnosticar a falta simulada em três pontos de operação diferentes do sistema. Em ambas as técnicas testadas, o método de MQR teve um bom desempenho, apenas para detectar a falta. Já, o método que utilizou estimação com supervisão fuzzy obteve melhor desempenho, em detectar e diagnosticar as faltas aplicadas ao sistema, constatando a proposta do trabalho.
Resumo:
Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.