8 resultados para Semi-Weight Function Method
em Universidade Federal do Pará
Resumo:
A migração com amplitudes verdadeiras de dados de reflexão sísmica, em profundidade ou em tempo, possibilita que seja obtida uma medida dos coeficientes de reflexão dos chamados eventos de reflexão primária. Estes eventos são constituídos, por exemplo, pelas reflexões de ondas longitudinais P-P em refletores de curvaturas arbitrárias e suaves. Um dos métodos mais conhecido é o chamado migração de Kirchhoff, através do qual a imagem sísmica é produzida pela integração do campo de ondas sísmicas, utilizando-se superfícies de difrações, denominadas de Superfícies de Huygens. A fim de se obter uma estimativa dos coeficientes de reflexão durante a migração, isto é a correção do efeito do espalhamento geométrico, utiliza-se uma função peso no operador integral de migração. A obtenção desta função peso é feita pela solução assintótica da integral em pontos estacionários. Tanto no cálculo dos tempos de trânsito como na determinação da função peso, necessita-se do traçamento de raios, o que torna a migração em situações de forte heterogeneidade da propriedade física um processo com alto custo computacional. Neste trabalho é apresentado um algoritmo de migração em profundidade com amplitudes verdadeiras, para o caso em que se tem uma fonte sísmica pontual, sendo o modelo de velocidades em subsuperfície representado por uma função que varia em duas dimensões, e constante na terceira dimensão. Esta situação, conhecida como modelo dois-e-meio dimensional (2,5-D), possui características típicas de muitas situações de interesse na exploração do petróleo, como é o caso da aquisição de dados sísmicos 2-D com receptores ao longo de uma linha sísmica e fonte sísmica 3-D. Em particular, é dada ênfase ao caso em que a velocidade de propagação da onda sísmica varia linearmente com a profundidade. Outro tópico de grande importância abordado nesse trabalho diz respeito ao método de inversão sísmica denominado empilhamento duplo de difrações. Através do quociente de dois empilhamentos com pesos apropriados, pode-se determinar propriedades físicas e parâmetros geométricos relacionados com a trajetória do raio refletido, os quais podem ser utilizados a posteriori no processamento dos dados sísmicos, visando por exemplo, a análise de amplitudes.
Resumo:
O presente trabalho teve como objeto de estudo a práxis dos trabalhadores da Cooperativa Agrícola Resistência Tocantina/CART. Dessa forma, buscou-se responder as seguintes questões: de que forma a cooperativa, como realidade objetiva, apresenta-se ao trabalhador como elemento da contradição, ou seja, como a objetividade criada pelos trabalhadores forja a práxis dos trabalhadores? De que forma a objetividade criada se relaciona com a estrutura econômica e superestrutura política e ideológica? E como essa relação reflete na práxis do trabalhador organizado na CART? Com isso, objetivou-se analisar a dinâmica da formação social do trabalhador, tomando por base a categoria da práxis. A metodologia ocorreu a partir da revisão bibliográfica e entrevista semi-estruturada, tendo como método de análise o materialismo histórico-dialético. A pesquisa chegou às seguintes conclusões: A práxis dos trabalhadores no interior da cooperativa forja-se a partir das diversas situações vividas pelo coletivo, seja de natureza econômica, política, técnica, ou científica; Os interesses externos (do capital) se materializam na CART pelo condicionamento da formação empreendida pelas ONGs, as quais fornecem uma formação restrita ao processo produtivo (assistência técnica e comercial); Ocorre também pelo condicionamento do planejamento anual da CART que obedece às exigências das parceiras comerciais (qualidade e quantidade e o tipo de produto que irá fornecer). Esse fato contribui para o desenvolvimento e reprodução da práxis utilitária, a qual se caracteriza por não proporcionar ao homem a compreensão das coisas e da realidade. No entanto, a práxis utilitária, no percurso histórico, produz objetivamente a sua contradição. Isso, porque, ela não se constitui simplesmente como um saber prático, mas se sustenta pela realização concreta; o que a torna elemento das relações econômicas e sociais. Assim, ela oportuniza ao trabalhador/associado um “novo” movimento dialético. Possibilitando, pela atividade cognoscitiva do sujeito, a apreensão da contradição a partir dessa realidade concreta; o que poderá refletir na qualidade da elaboração, ainda que no plano ideal, da atividade teleológica, caracterizada pela exigência prática. Esse processo denomina-se como: a dialética da práxis.
Resumo:
Neste trabalho reportamos a investigação teórica da solvatação dos isômeros do tris- (8-idroxiquinolinolato) de alumínio III – Alq3, as propriedades eletroluminescentes na solvatação de Alq3 em líquidos orgânicos como metanol, etanol, dimetilformamida (DMF) e acetonitrila, a fim de se entender a dependência na variação de ambientes do sistema, aperfeiçoando o funcionamento de filmes transportadores em dispositivos eletroluminescentes do tipo OLED (Organic Light-Emitting Diodes) e por fim investigamos o mecanismo do transporte eletrônico no Alq3 aplicando uma baixa corrente elétrica na molécula e evidenciando as curvas corrente-voltagem característica do dispositivo. A simulação consiste na aplicação do método sequencial Monte Carlo / Mecânica quântica (S-MC/MQ), que parte de um tratamento inicial estocástico para separação das estruturas mais prováveis de menor energia e posteriormente com um tratamento quântico para plotar os espectros eletrônicos das camadas de solvatação separadas através do método ZINDOS/S. Nas propriedades elétricas do transporte utilizamos o método da função de Green de não equilíbrio acoplado a teoria do funcional densidade (DFT) inferindo que as ramificações mais externas correspondentes aos anéis no Alq3 seriam terminais para o translado eletrônico. Nossos resultados mostraram que a média dos espectros de absorção para solvatação do Alq3 em soluções sofre um desvio mínimo com a mudança de ambiente, estando em ótimo acordo com os resultados experimentais da literatura; e as curvas I-V confirmaram o comportamento diodo do dispositivo, corroborando com os sentidos mais pertinentes quanto aos terminais no Alq3 para se ter um transporte eletrônico satisfatório.
Resumo:
O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.
Resumo:
O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa no imageamento sísmicos. Nesta dissertação, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB).Afim de comparar os métodos Kirchhoff e KGB com respeito à sensibilidade em relação ao comprimento da discretização, aplicamos no conjunto de dados conhecido como Marmousi 2-D quatro grids de velocidade, ou seja, 60m, 80m 100m e 150m. Como resultado, temos que ambos os métodos apresentam uma imagem muito melhor para o menor intervalo de discretização da malha de velocidade. O espectro de amplitude das seções migradas nos fornece o conteúdo de frequência espacial das seções das imagens obtidas.
Resumo:
Nos últimos anos tem-se verificado através de várias publicações um interesse crescente em métodos de migração com amplitude verdadeira, com o objetivo de obter mais informações sobre as propriedades de refletividade da subsuperfície da terra. A maior parte desses trabalhos tem tratado deste tema baseando-se na aproximação de Born, como em Bleistein (1987) e Bleistein et al. (1987), ou na aproximação do campo de ondas pela teoria do raio como Hubral et al. (1991), Schleicher et al. (1993) e Martins et al. (1997). Considerando configurações arbitrárias de fontes e receptores, as reflexões primárias compressionais podem ser imageadas em reflexões migradas no domínio do tempo ou profundidade de tal modo que as amplitudes do campo de ondas migrado são uma medida do coeficiente de reflexão dependente do ângulo de incidência. Para realizar esta tarefa, vários algoritmos têm sido propostos nos últimos anos baseados nas aproximações de Kirchhoff e Born. Essas duas abordagens utilizam um operador integral de empilhamento de difrações ponderado que é aplicado aos dados da seção sísmica de entrada. Como resultado obtém-se uma seção migrada onde, em cada ponto refletor, tem-se o pulso da fonte com amplitude proporcional ao coeficiente de reflexão naquele ponto. Baseando-se na aproximação de Kirchhoff e na aproximação da teoria do raio do campo de ondas, neste trabalho é obtida a função peso para modelos bidimensionais (2-D) e dois e meio dimensionais (2,5-D) que é aplicada a dados sintéticos com e sem ruído. O resultado mostra a precisão e estabilidade do método de migração em 2-D e 2,5-D como uma ferramenta para a obtenção de informações importantes da subsuperfície da terra, que é de grande interesse para a análise da variação da amplitude com o afastamento (ângulo). Em suma, este trabalho apresenta expressões para as funções peso 2-D e 2,5-D em função de parâmetros ao longo de cada ramo do raio. São mostrados exemplos da aplicação do algoritmo de migração em profundidade a dados sintéticos 2-D e 2,5-D obtidos por modelamento sísmico através da teoria do raio usando o pacote Seis88 (Cervený e Psencík, 1988) e os resultados confirmaram a remoção do espalhamento geométrico dos dados migrados mesmo na presença de ruído. Testes adicionais foram realizados para a análise do efeito de alongamento do pulso na migração em profundidade (Tygel et al., 1994) e a aplicação do empilhamento múltiplo (Tygel et al., 1993) para a estimativa de atributos dos pontos de reflexão - no caso o ângulo de reflexão e a posição do receptor.
Resumo:
Este trabalho tem por objetivo a aplicação de um método de migração com amplitudes verdadeiras, considerando-se um meio acústico onde a velocidade de propagação varia linearmente com a profundidade. O método de migração é baseado na teoria dos raios e na integral de migração de Kirchhoff, procurando posicionar de forma correta os refletores e recuperar os respetivos coeficientes de reflexão. No processo de recuperação dos coeficientes de reflexão, busca-se corrigir o fator de espalhamento geométrico de reflexões sísmicas primárias, sem o conhecimento a priori dos refletores procurados. Ao considerar-se configurações fonte-receptor arbitrárias, as reflexões primárias podem ser imageadas no tempo ou profundidade, sendo as amplitudes do campo de ondas migrado uma medida dos coeficientes de reflexão (função do ângulo de incidência). Anteriormente têm sido propostos alguns algoritmos baseados na aproximação de Born ou Kirchhoff. Todos são dados em forma de um operador integral de empilhamento de difrações, que são aplicados à entrada dos dados sísmicos. O resultado é uma seção sísmica migrada, onde cada ponto de reflexão é imageado com uma amplitude proporcional ao coeficiente de reflexão no ponto. No presente caso, o processo de migração faz uso de um modelo com velocidade que apresenta uma distribuição que varia linearmente com a profundidade, conhecido também como gradiente constante de velocidade. O esquema de migração corresponde a uma versão modificada da migração de empilhamento por difração e faz uso explícito da teoria do raio, por exemplo, na descrição de tempos de trânsito e amplitudes das reflexões primárias, com as quais a operação de empilhamento e suas propriedades podem ser entendidas geometricamente. Efeitos como o espalhamento geométrico devido à trajetória do raio levam a distorção das amplitudes. Estes efeitos têm que ser corregidos durante o processamento dos dados sísmicos. Baseados na integral de migração de Kirchhoff e na teoria paraxial dos raios, foi derivada a função peso e o operador da integral por empilhamento de difrações para um modelo sísmico 2,5-D, e aplicado a uma serie de dados sintéticos em ambientes com ruído e livre de ruído. O resultado mostra a precisão e estabilidade do método de migração em um meio 2,5-D como ferramenta para obter informação sobre as propriedades de refletividade da subsuperfície da terra. Neste método não são levados em consideração a existência de caústicas nem a atenuação devido a fricção interna.
Resumo:
Localizar em subsuperfície a região que mais influencia nas medidas obtidas na superfície da Terra é um problema de grande relevância em qualquer área da Geofísica. Neste trabalho, é feito um estudo sobre a localização dessa região, denominada aqui zona principal, para métodos eletromagnéticos no domínio da freqüência, utilizando-se como fonte uma linha de corrente na superfície de um semi-espaço condutor. No modelo estudado, tem-se, no interior desse semi-espaço, uma heterogeneidade na forma de camada infinita, ou de prisma com seção reta quadrada e comprimento infinito, na direção da linha de corrente. A diferença entre a medida obtida sobre o semi-espaço contendo a heterogeneidade e aquela obtida sobre o semi-espaço homogêneo, depende, entre outros parâmetros, da localização da heterogeneidade em relação ao sistema transmissor-receptor. Portanto, mantidos constantes os demais parâmetros, existirá uma posição da heterogeneidade em que sua influência é máxima nas medidas obtidas. Como esta posição é dependente do contraste de condutividade, das dimensões da heterogeneidade e da freqüência da corrente no transmissor, fica caracterizada uma região e não apenas uma única posição em que a heterogeneidade produzirá a máxima influência nas medidas. Esta região foi denominada zona principal. Identificada a zona principal, torna-se possível localizar com precisão os corpos que, em subsuperfície, provocam as anomalias observadas. Trata-se geralmente de corpos condutores de interesse para algum fim determinado. A localização desses corpos na prospecção, além de facilitar a exploração, reduz os custos de produção. Para localizar a zona principal, foi definida uma função Detetabilidade (∆), capaz de medir a influência da heterogeneidade nas medidas. A função ∆ foi calculada para amplitude e fase das componentes tangencial (Hx) e normal (Hz) à superfície terrestre do campo magnético medido no receptor. Estudando os extremos da função ∆ sob variações de condutividade, tamanho e profundidade da heterogeneidade, em modelos unidimensionais e bidimensionais, foram obtidas as dimensões da zona principal, tanto lateralmente como em profundidade. Os campos eletromagnéticos em modelos unidimensionais foram obtidos de uma forma híbrida, resolvendo numericamente as integrais obtidas da formulação analítica. Para modelos bidimensionais, a solução foi obtida através da técnica de elementos finitos. Os valores máximos da função ∆, calculada para amplitude de Hx, mostraram-se os mais indicados para localizar a zona principal. A localização feita através desta grandeza apresentou-se mais estável do que através das demais, sob variação das propriedades físicas e dimensões geométricas, tanto dos modelos unidimensionais como dos bidimensionais. No caso da heterogeneidade condutora ser uma camada horizontal infinita (caso 1D), a profundidade do plano central dessa camada vem dada pela relação po = 0,17 δo, onde po é essa profundidade e δo o "skin depth" da onda plana (em um meio homogêneo de condutividade igual à do meio encaixante (σ1) e a freqüência dada pelo valor de w em que ocorre o máximo de ∆ calculada para a amplitude de Hx). No caso de uma heterogeneidade bidimensional (caso 2D), as coordenadas do eixo central da zona principal vem dadas por do = 0,77 r0 (sendo do a distância horizontal do eixo à fonte transmissora) e po = 0,36 δo (sendo po a profundidade do eixo central da zona principal), onde r0 é a distância transmissor-receptor e δo o "skin depth" da onda plana, nas mesmas condições já estipuladas no caso 1D. Conhecendo-se os valores de r0 e δo para os quais ocorre o máximo de ∆, calculado para a amplitude de Hx, pode-se determinar (do, po). Para localizar a zona principal (ou, equivalentemente, uma zona condutora anômala em subsuperfície), sugere-se um método que consiste em associar cada valor da função ∆ da amplitude de Hx a um ponto (d, p), gerado através das relações d = 0,77 r e p = 0,36 δ, para cada w, em todo o espectro de freqüências das medidas, em um dado conjunto de configurações transmissor-receptor. São, então, traçadas curvas de contorno com os isovalores de ∆ que vão convergir, na medida em que o valor de ∆ se aproxima do máximo, sobre a localização e as dimensões geométricas aproximadas da heterogeneidade (zona principal).