1 resultado para STATIONARY SPACETIMES
em Universidade Federal do Pará
Filtro por publicador
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (15)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (24)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (4)
- Brock University, Canada (2)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (27)
- Cambridge University Engineering Department Publications Database (55)
- CentAUR: Central Archive University of Reading - UK (21)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (167)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (9)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (5)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (14)
- Indian Institute of Science - Bangalore - Índia (199)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Massachusetts Institute of Technology (5)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (7)
- Publishing Network for Geoscientific & Environmental Data (8)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (93)
- Queensland University of Technology - ePrints Archive (127)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (1)
- University of Michigan (14)
- University of Queensland eSpace - Australia (8)
Resumo:
ABSTRACT: The Kalman-Bucy method is here analized and applied to the solution of a specific filtering problem to increase the signal message/noise ratio. The method is a time domain treatment of a geophysical process classified as stochastic non-stationary. The derivation of the estimator is based on the relationship between the Kalman-Bucy and Wiener approaches for linear systems. In the present work we emphasize the criterion used, the model with apriori information, the algorithm, and the quality as related to the results. The examples are for the ideal well-log response, and the results indicate that this method can be used on a variety of geophysical data treatments, and its study clearly offers a proper insight into modeling and processing of geophysical problems.