1 resultado para RNA 5.8S

em Universidade Federal do Pará


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esse trabalho compara os algoritmos C4.5 e MLP (do inglês “Multilayer Perceptron”) aplicados a avaliação de segurança dinâmica ou (DSA, do inglês “Dynamic Security Assessment”) e em projetos de controle preventivo, com foco na estabilidade transitória de sistemas elétricos de potência (SEPs). O C4.5 é um dos algoritmos da árvore de decisão ou (DT, do inglês “Decision Tree”) e a MLP é um dos membros da família das redes neurais artificiais (RNA). Ambos os algoritmos fornecem soluções para o problema da DSA em tempo real, identificando rapidamente quando um SEP está sujeito a uma perturbação crítica (curto-circuito, por exemplo) que pode levar para a instabilidade transitória. Além disso, o conhecimento obtido de ambas as técnicas, na forma de regras, pode ser utilizado em projetos de controle preventivo para restaurar a segurança do SEP contra perturbações críticas. Baseado na formação de base de dados com exaustivas simulações no domínio do tempo, algumas perturbações críticas específicas são tomadas como exemplo para comparar os algoritmos C4.5 e MLP empregadas a DSA e ao auxílio de ações preventivas. O estudo comparativo é testado no sistema elétrico “New England”. Nos estudos de caso, a base de dados é gerada por meio do programa PSTv3 (“Power System Toolbox”). As DTs e as RNAs são treinada e testadas usando o programa Rapidminer. Os resultados obtidos demonstram que os algoritmos C4.5 e MLP são promissores nas aplicações de DSA e em projetos de controle preventivo.