2 resultados para Prostate gland

em Universidade Federal do Pará


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of human papillomavirus (HPV) was evaluated in 65 samples of prostate tumours and six samples of prostates with benign prostatic hyperplasia from individuals from Northern Brazil. We used a highly sensitive test, the Linear Array HPV Genotyping Test, to detect 37 high and low-risk HPV types. In this study, only 3% of tumour samples showed HPV infection. Our findings support the conclusion that, despite the high incidence of HPV infection in the geographic regions studied, HPV was not associated with a higher risk of prostate cancer. To our knowledge, this is the first study evaluating the frequency of HPV detection in prostatic tissue of individuals from Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of adenosine on prolactin (PRL) secretion from rat anterior pituitaries incubated in vitro. The administration of 5-N- methylcarboxamidoadenosine (MECA), an analog agonist that preferentially activates A2 receptors, induced a dose-dependent (1 nM to 1 µM) increase in the levels of PRL released, an effect abolished by 1,3-dipropyl-7-methylxanthine, an antagonist of A2 adenosine receptors. In addition, the basal levels of PRL secretion were decreased by the blockade of cyclooxygenase or lipoxygenase pathways, with indomethacin and nordihydroguaiaretic acid (NDGA), respectively. The stimulatory effects of MECA on PRL secretion persisted even after the addition of indomethacin, but not of NDGA, to the medium. MECA was unable to stimulate PRL secretion in the presence of dopamine, the strongest inhibitor of PRL release that works by inducing a decrease in adenylyl cyclase activity. Furthermore, the addition of adenosine (10 nM) mimicked the effects of MECA on PRL secretion, an effect that persisted regardless of the presence of LiCl (5 mM). The basal secretion of PRL was significatively reduced by LiCl, and restored by the concomitant addition of both LiCl and myo-inositol. These results indicate that PRL secretion is under a multifactorial regulatory mechanism, with the participation of different enzymes, including adenylyl cyclase, inositol-1-phosphatase, cyclooxygenase, and lipoxygenase. However, the increase in PRL secretion observed in the lactotroph in response to A2 adenosine receptor activation probably was mediated by mechanisms involving regulation of adenylyl cyclase, independent of membrane phosphoinositide synthesis or cyclooxygenase activity and partially dependent on lipoxygenase arachidonic acid-derived substances.