2 resultados para Prediction model

em Universidade Federal do Pará


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O modelo OLAM foi desenvolvido com objetivo de estender a capacidade de representar os fenômenos de escala global e regional simultaneamente. Este modelo apresenta inovações quanto aos processos dinâmicos, configuração de grade, estrutura de memória e técnicas de solução numérica das equações prognósticas. As equações de Navier-Stokes são resolvidas através da técnica de volumes finitos que conservam massa, momento e energia. No presente trabalho, apresenta-se uma descrição sucinta do OLAM e alguns resultados de sua aplicação em simulações climáticas da precipitação mensal para a região norte da América do Sul, bem como em rodadas para previsão numérica de tempo regional. Os resultados mostram que o modelo consegue representar bem os aspectos meteorológicos de grande escala. Em geral, seu desempenho melhora quando são adotadas grades de maior resolução espacial, nas quais se verificam melhorias significativas tanto na estimativa da precipitação mensal regional, quanto na previsão numérica de tempo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O modelo OLAM tem como característica a vantagem de representar simultaneamente os fenômenos meteorológicos de escala global e regional através de um esquema de refinamento de grades. Durante o projeto REMAM, o modelo foi aplicado para alguns estudos de caso com objetivo de avaliar o desempenho do modelo na previsão numérica de tempo para a região leste da Amazônia. Estudos de caso foram feitos para os doze meses do ano de 2009. Os resultados do modelo para estes casos foram comparados com dados observados na região de estudo. A análise dos dados de precipitação mostrou que o modelo consegue representar a distribuição média da precipitação acumulada e os aspectos da sazonalidade da ocorrência dos eventos, mas não consegue prever individualmente a acumulação de precipitação local. No entanto, avaliação individual de alguns casos mostrou que o modelo OLAM conseguiu representar dinamicamente e prever, com alguns dias de antecedência, o desenvolvimento de fenômenos meteorológicos costeiros como as linhas de instabilidade, que são um dos mais importantes sistemas precipitantes da Amazônia.