4 resultados para Petrophysical

em Universidade Federal do Pará


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A maioria dos perfis de poço utilizados nas avaliações petrofísicas de reservatórios possuem uma resolução vertical na ordem de um metro. Isto cria um problema quando as espessuras típicas das camadas são inferiores a um metro, uma vez que não há correção das leituras. Os perfis de alta resolução vertical como da ferramenta de propagação eletromagnética (EPT, Schlumberger), o dipmeter (SHDT, Schlumberger) ou das ferramentas de varredura acústica ou elétrica possuem uma resolução vertical da ordem de centimetros, mas apresentam uma limitada aplicação para as avaliações petrofísicas. Nós apresentamos um método para a deconvolução de um perfil de baixa resolução vertical que utiliza informações de um perfil de alta resolução vertical para identificar uma nítida interface entre camadas que apresentam valores da propriedade petrofísica contrastante, mas localmente constante em ambos os lados. A partir desse intervalo de controle, nós determinamos a função resposta vertical da ferramenta sob as condições atuais do poço com base no teorema da convolução. Utilizamos várias interfaces de modo a obter valores mais representativos da resposta da ferramenta. O perfil de baixa resolução é então deconvoluido utilizando a transformada discreta de Fourier (FFT) sobre todo o intervalo de interesse. É importante destacar que a invasão do filtrado da lama e a presença do bolo de lama não produzem efeitos danosos sobre o método, que foi aplicado a perfis sintéticos e a dados de campo, onde a aplicação de filtros com um correto ajuste de profundidade, bem como a própria escolha do intervalo de controle, antes da deconvolução, são de extrema importância para o sucesso do método.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dois dos principais objetivos da interpretação petrofísica de perfis são a determinação dos limites entre as camadas geológicas e o contato entre fluidos. Para isto, o perfil de indução possui algumas importantes propriedades: É sensível ao tipo de fluido e a distribuição do mesmo no espaço poroso; e o seu registro pode ser modelado com precisão satisfatória como sendo uma convolução entre a condutividade da formação e a função resposta da ferramenta. A primeira propriedade assegura uma boa caracterização dos reservatórios e, ao mesmo tempo, evidencia os contatos entre fluidos, o que permite um zoneamento básico do perfil de poço. A segunda propriedade decorre da relação quasi-linear entre o perfil de indução e a condutividade da formação, o que torna possível o uso da teoria dos sistemas lineares e, particularmente, o desenho de filtros digitais adaptados à deconvolução do sinal original. A idéia neste trabalho é produzir um algoritmo capaz de identificar os contatos entre as camadas atravessadas pelo poço, a partir da condutividade aparente lida pelo perfil de indução. Para simplificar o problema, o modelo de formação assume uma distribuição plano-paralela de camadas homogêneas. Este modelo corresponde a um perfil retangular para condutividade da formação. Usando o perfil de entrada digitalizado, os pontos de inflexão são obtidos numericamente a partir dos extremos da primeira derivada. Isto gera uma primeira aproximação do perfil real da formação. Este perfil estimado é então convolvido com a função resposta da ferramenta gerando um perfil de condutividade aparente. Uma função custo de mínimos quadrados condicionada é definida em termos da diferença entre a condutividade aparente medida e a estimada. A minimização da função custo fornece a condutividade das camadas. O problema de otimização para encontrar o melhor perfil retangular para os dados de indução é linear nas amplitudes (condutividades das camadas), mas uma estimativa não linear para os contatos entre as camadas. Neste caso as amplitudes são estimadas de forma linear pelos mínimos quadrados mantendo-se fixos os contatos. Em um segundo passo mantem-se fixas as amplitudes e são calculadas pequenas mudanças nos limites entre as camadas usando uma aproximação linearizada. Este processo é interativo obtendo sucessivos refinamentos até que um critério de convergência seja satisfeito. O algoritmo é aplicado em dados sintéticos e reais demonstrando a robustez do método.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A permeabilidade e a porosidade são duas das mais importantes propriedades petrofísicas para a qualificação dos reservatórios de óleo e gás. A porosidade está relacionada à capacidade de armazenamento de fluidos e a permeabilidade, com a capacidade de produção destes fluidos. Suas medidas são, normalmente, realizadas em laboratório, através de testemunhos da rocha. Esses processos têm custos elevados e nem todos os poços são testemunhados. As estimativas da permeabilidade e da porosidade são de fundamental importância para os engenheiros de reservatório e geofísicos, uma vez que seus valores podem definir a completação ou não de um poço petrolífero. O perfil de porosidade e sua relação com o perfil de densidade, é bem conhecida na geofísica de poço. No entanto, existem poucas relações quantitativas e/ou qualitativas entre a porosidade e a permeabilidade, como por exemplo as relações de Kozeny. Sendo assim, este trabalho busca o estabelecimento do perfil de permeabilidade e do perfil de porosidade, a partir de informações do perfil de densidade. Para tanto, buscamos a relação entre a propriedade física da rocha (densidade) e as propriedades petrofísicas: permeabilidade e porosidade, utilizando como metodologia à técnica de redes neurais artificiais, como a rede neural artificial com função de base radial. A obtenção da permeabilidade e da porosidade a partir da rede neural artificial, que possui como entrada a informação da densidade possibilita um menor custo para a aquisição dessas importantes informações petrofísicas, permite ao intérprete de perfis de poço optar ou não pela exploração de uma unidade estudada, além de uma visão mais completa do reservatório. Os procedimentos para a estimativa da permeabilidade e da porosidade estão direcionados para uma única formação, mas os intérpretes de perfis poderão aplicar a diretriz apresentada no programa de rede neural artificial com função de base radial, utilizando a estimativa dessas propriedades petrofísicas para outras formações, inclusive de outros campos petrolíferos. Portanto, recomenda-se a utilização de um conjunto de dados completo, com quantidade de dados suficientes de um mesmo poço, a fim de viabilizar corretamente a melhor interpretação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A saturação de água é a principal propriedade petrofísica para a avaliação de reservatórios de hidrocarbonetos, pois através da análise dos seus valores é definida a destinação final do poço recém perfurado, como produtor ou poço seco. O cálculo da saturação de água para as formações limpas é, comumente, realizado a partir da equação de Archie, que envolve a determinação da resistividade da zona virgem, obtida a partir de um perfil de resistividade profunda e o cálculo de porosidade da rocha, obtida a partir dos perfis de porosidade. A equação de Archie envolve ainda, a determinação da resistividade da água de formação, que normalmente necessita de definição local e correção para a profundidade da formação e da adoção de valores convenientes para os coeficientes de Archie. Um dos métodos mais tradicionais da geofísica de poço para o cálculo da saturação de água é o método de Hingle, particularmente útil nas situações de desconhecimento da resistividade da água de formação. O método de Hingle estabelece uma forma linear para a equação de Archie, a partir dos perfis de resistividade e porosidade e a representa na forma gráfica, como a reta da água ou dos pontos, no gráfico de Hingle, com saturação de água unitária e o valor da resistividade da água de formação é obtido a partir da inclinação da reta da água. Independente do desenvolvimento tecnológico das ferramentas de perfilagem e dos computadores digitais, o geofísico, ainda hoje, se vê obrigado a realizar a interpretação de ábacos ou gráficos, sujeito a ocorrência de erros derivados da sua acuidade visual. Com o objetivo de mitigar a ocorrência deste tipo de erro e produzir uma primeira aproximação para a saturação de água em tempo real de perfilagem do poço, insere-se o trabalho apresentado nesta dissertação, com a utilização de uma conveniente arquitetura de rede neural artificial, a rede competitiva angular, capaz de identificar a localização da reta da água, a partir da identificação de padrões angulares presentes nos dados dos perfis de porosidade e resistividade representados no gráfico de Hingle. A avaliação desta metodologia é realizada sobre dados sintéticos, que satisfazem integralmente a equação de Archie, e sobre dados reais.