2 resultados para Payment by performance
em Universidade Federal do Pará
Resumo:
Foram simuladas estruturas de dados em modelos mistos representando o teste de 100 reprodutores, sendo cada reprodutor acasalado com 10 matrizes (total de 1000 matrizes), originando em cada acasalamento 2 proles, totalizando 2000 proles (vinte proles por reprodutor). De cada combinação reprodutor e matriz, dez proles tiveram seu fenótipo expresso no ambiente de baixa produção (Estrato 1) e, a outra metade, no ambiente de alta produção (Estrato 2). A simulação foi realizada de forma a representar diferentes situações de presença de heterogeneidade de variâncias, combinando-se as origens da heterogeneidade, de natureza genética e ambiental. Na presença de heterogeneidade residual, o valor estimado para o componente de variância residual, considerando homogeneidade de variâncias se aproximou do valor médio das variâncias entre os estratos. Houve superestimação, também, do componente de variância genético aditivo. Ao simular heterogeneidade de variância de origem genética, observou-se que a estimação desse componente situou-se em valor intermediário aos simulados. Nessa situação, o componente de variância residual estimado foi próximo do valor simulado, indicando que a heterogeneidade de variâncias quando proveniente de fatores genéticos, não interfere, substancialmente, sobre e estimação do componente de variância residual. Na simulação de dados com presença de heterogeneidade tanto de origem genética quanto ambiental (estrutura de dados 4), conduziu a estimação de componentes de variâncias intermediários aos valores simulados em cada estrato. Assim, observa-se que, mesmo quando os reprodutores apresentam proles bem distribuídas em ambos os estratos, a heterogeneidade de variância proveniente de fatores não genético provoca distorções sobre a estimação da variância genética aditiva. Mas por outro lado, quando a heterogeneidade de variância é decorrente de fatores genéticos, não há grande interferência sobre a estimativa da variância residual, tal comportamento pode ser explicado pela incorporação da matriz de parentesco na estimação do componente de variância genético aditivo, possibilitando discriminar melhor a origem da diferenças entre variâncias. Na estrutura onde a variância residual foi heterogênea a estimativa de herdabilidade foi menor em relação à estrutura de homogeneidade de variâncias. Por outro lado, quando somente a variância genética aditiva foi heterogênea, a estimativa de herdabilidade, considerando-se apenas o estrato de alta variabilidade genética, foi inflacionada pela superestimação da variância genética aditiva. No entanto, a estimativa de herdabilidade obtida, desconsiderando essa fonte de heterogeneidade de variância, foi próxima à situação de homogeneidade de variância, indicando que, quando os reprodutores possuem boa distribuição de proles em diferentes ambientes, as estimativas relacionadas ao efeito genético são ponderadas pelo desempenho dos animais em cada ambiente. As correlações de Spearman e de Pearson entre os valores genéticos preditos dos reprodutores, para todas as situações, foram maiores que 0,90. O resultado indica que, mesmo havendo presença de heterogeneidade de variância genética e/ou ambiental, se os reprodutores possuem proles bem distribuídas entre os ambientes (estratos heterogêneos) a classificação do mérito genético não se altera, o que era esperado, pois em análises unicarácter, quando ocorre uma fonte de viés na avaliação genética, ela é comum a todos os indivíduos. Na situação em que foi imposta a estrutura de dados à presença de heterogeneidade de variância residual com número de número desigual de proles por reprodutor nos estratos, provocou superestimação dos componentes de variância. Porém mesmo havendo alteração na magnitude dos valores genéticos preditos para os reprodutores, a heterogeneidade de variância não alterou a classificação entre os reprodutores todas as correlações de ordem foram próximas à unidade. O efeito da heterogeneidade de variância, oriunda de fatores ambientais, ocasiona em maiores distorções sobre a avaliação genética animal, em relação, quando a mesma é proveniente de causas genéticas. A conexidade genética entre diferentes ambientes, dilui o efeito da heterogeneidade de variância, tanto de origem genética, quanto ambiental, na predição de valores genéticos dos reprodutores.
Resumo:
A "second generation" matching-to-sample procedure that minimizes past sources of artifacts involves (1) successive discrimination between sample stimuli, (2) stimulus displays ranging from four to 16 comparisons, (3) variable stimulus locations to avoid unwanted stimulus-location control, and (4) high accuracy levels (e.g., 90% correct on a 16-choice task in which chance accuracy is 6%). Examples of behavioral engineering with experienced capuchin monkeys included four-choice matching problems with video images of monkeys with substantially above-chance matching in a single session and 90% matching within six sessions. Exclusion performance was demonstrated by interspersing non-identical sample-comparison pairs within a baseline of a nine-comparison identity-matching-to-sample procedure with pictures as stimuli. The test for exclusion presented the newly "mapped" stimulus in a situation in which exclusion was not possible. Degradation of matching between physically non-identical forms occurred while baseline identity accuracy was sustained at high levels, thus confirming that Cebus cf. apella is capable of exclusion. Additionally, exclusion performance when baseline matching relations involved non-identical stimuli was shown.