2 resultados para PARAMETER-ESTIMATION

em Universidade Federal do Pará


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este artigo apresenta um estudo experimental de técnicas de identificação paramétrica aplicadas à modelagem dinâmica de um servidor web Apache. Foi desenvolvido um arranjo experimental para simular variações de carga no servidor. O arranjo é composto por dois computadores PC, sendo um deles utilizado para executar o servidor Apache e o outro utilizado como um gerador de carga, solicitando requisições de serviço ao servidor Apache. Foram estimados modelos paramétricos auto-regressivos (AR) para diferentes pontos de operação e de condição de carga. Cada ponto de operação foi definido em termos dos valores médios para o parâmetro de entrada MaxClients (parâmetro utilizado para definir o número máximo de processos ativos) e a saída percentual de consumo de CPU (Central Processing Unit) do servidor Apache. Para cada ponto de operação foram coletadas 600 amostras, com um intervalo de amostragem de 5 segundos. Metade do conjunto de amostras coletadas em cada ponto de operação foi utilizada para estimação do modelo, enquanto que a outra metade foi utilizada para validação. Um estudo da ordem mais adequada do modelo mostrou que, para um ponto de operação com valor reduzido de MaxClients, um modelo AR de 7a ordem pode ser satisfatório. Para valores mais elevados de MaxClients, os resultados mostraram que são necessários modelos de ordem mais elevada, devido às não-linearidades inerentes ao sistema.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.