2 resultados para NEURAL SYSTEMS

em Universidade Federal do Pará


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A utilização de Estabilizadores de Sistemas de Potência (ESP), para amortecer oscilações eletromecânicas de pequena magnitude e baixa freqüência, é cada vez mais importante na operação dos modernos sistemas elétricos. Estabilizadores convencionais, com estrutura e parâmetros fixos, têm sido utilizados com essa finalidade há algumas décadas, porém existem regiões de operação do sistema nas quais esses estabilizadores lineares não são tão eficientes, especialmente quando comparados com estabilizadores projetados através de modernas técnicas de controle. Um ESP Neural, treinado a partir de um conjunto de controladores lineares locais, é utilizado para investigar em quais regiões de operação do sistema elétrico o desempenho do estabilizador a parâmetros fixos é deteriorada. O melhor desempenho do ESP Neural nessas regiões de operação, quando comparado com o ESP convencional, é demonstrado através de simulações digitais não-lineares de um sistema do tipo máquina síncrona conectada a um barramento infinito e de um sistema com quatro geradores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apesar do avanço tecnológico ocorrido na prospecção sísmica, com a rotina dos levantamentos 2D e 3D, e o significativo aumento na quantidade de dados, a identificação dos tempos de chegada da onda sísmica direta (primeira quebra), que se propaga diretamente do ponto de tiro até a posição dos arranjos de geofones, permanece ainda dependente da avaliação visual do intérprete sísmico. O objetivo desta dissertação, insere-se no processamento sísmico com o intuito de buscar um método eficiente, tal que possibilite a simulação computacional do comportamento visual do intérprete sísmico, através da automação dos processos de tomada de decisão envolvidos na identificação das primeiras quebras em um traço sísmico. Visando, em última análise, preservar o conhecimento intuitivo do intérprete para os casos complexos, nos quais o seu conhecimento será, efetivamente, melhor aproveitado. Recentes descobertas na tecnologia neurocomputacional produziram técnicas que possibilitam a simulação dos aspectos qualitativos envolvidos nos processos visuais de identificação ou interpretação sísmica, com qualidade e aceitabilidade dos resultados. As redes neurais artificiais são uma implementação da tecnologia neurocomputacional e foram, inicialmente, desenvolvidas por neurobiologistas como modelos computacionais do sistema nervoso humano. Elas diferem das técnicas computacionais convencionais pela sua habilidade em adaptar-se ou aprender através de uma repetitiva exposição a exemplos, pela sua tolerância à falta de alguns dos componentes dos dados e pela sua robustez no tratamento com dados contaminados por ruído. O método aqui apresentado baseia-se na aplicação da técnica das redes neurais artificiais para a identificação das primeiras quebras nos traços sísmicos, a partir do estabelecimento de uma conveniente arquitetura para a rede neural artificial do tipo direta, treinada com o algoritmo da retro-propagação do erro. A rede neural artificial é entendida aqui como uma simulação computacional do processo intuitivo de tomada de decisão realizado pelo intérprete sísmico para a identificação das primeiras quebras nos traços sísmicos. A aplicabilidade, eficiência e limitações desta abordagem serão avaliadas em dados sintéticos obtidos a partir da teoria do raio.