5 resultados para NEAR-FIELD STRUCTURE
em Universidade Federal do Pará
Resumo:
ABSTRACT: In this paper, we present a quantitative comparison of circular and triangular gold nanodisks with the same length and thickness. The method of moments is used to solve numerically the scattering problem. With this model, we investigate the spatial near field distribution, spectral response, far field diagrams, and bandwidth wavelength of these particles. Our results show that the resonant wavelength and the near field enhancement and confinement of the triangular particle are larger than those for the circular particle, but the resonance bandwidth and scattering cross section of the triangular particle are smaller.
Resumo:
In this paper, we present an analysis of the resonant response of modified triangular metallic nanoparticles with polynomial sides. The particles are illuminated by an incident plane wave and the method of moments is used to solve numerically the electromagnetic scattering problem. We investigate spectral response and near field distribution in function of the length and polynomial order of the nanoparticles. Our results show that in the analyzed wavelength range (0.5-1.8) µm these particles possess smaller number of resonances and their resonant wavelengths, near field enhancement and field confinement are higher than those of the conventional triangular particle with linear sides.
Resumo:
Este trabalho apresenta o desenvolvimento de um algoritmo computacional para análise do espalhamento eletromagnético de nanoestruturas plasmônicas isoladas. O Método dos Momentos tridimensional (MoM-3D) foi utilizado para resolver numericamente a equação integral do campo elétrico, e o modelo de Lorentz-Drude foi usado para representar a permissividade complexa das nanoestruturas metálicas. Baseado nesta modelagem matemática, um algoritmo computacional escrito em linguagem C foi desenvolvido. Como exemplo de aplicação e validação do código, dois problemas clássicos de espalhamento eletromagnético de nanopartículas metálicas foram analisados: nanoesfera e nanobarra, onde foram calculadas a resposta espectral e a distribuição do campo próximo. Os resultados obtidos foram comparados com resultados calculados por outros modelos e observou-se uma boa concordância e convergência entre eles.
Resumo:
In this paper, we present an algorithm for full-wave electromagnetic analysis of nanoplasmonic structures. We use the three-dimensional Method of Moments to solve the electric field integral equation. The computational algorithm is developed in the language C. As examples of application of the code, the problems of scattering from a nanosphere and a rectangular nanorod are analyzed. The calculated characteristics are the near field distribution and the spectral response of these nanoparticles. The convergence of the method for different discretization sizes is also discussed.
Resumo:
In this work, we analyze modified bowtie nanoantennas with polynomial sides in the excitation and emission regimes. In the excitation regime, the antennas are illuminated by an incident plane wave, and in the emission regime, the excitation is fulfilled by infinitesimal electric dipole positioned in the gap of the nanoantennas. Several antennas with different sizes and polynomial order were numerically analyzed by method of moments. The results show that these novel antennas possess a controllable resonance by the polynomial order and good characteristics of near field enhancement and confinement for applications in enhancement of spontaneous emission of a single molecule.