10 resultados para Modelo de previsão

em Universidade Federal do Pará


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente dissertação desenvolveu um Sistema de Alerta de Enchentes para a Cidade de Marabá, localizada na confluência dos rios Itacaiúnas e Tocantins, a 440 km da cidade de Belém, capital do Estado do Pará. O Sistema de Alerta de Enchentes foi desenvolvido com base no modelo hidrológico MOD-4B incorporado a um Sistema de Informações Geográficas. Esse sistema permite prever as variações do nível do Rio Tocantins ao longo do ano, de modo a acompanhar a evolução da cheia com antecedência de 4 dias, o que torna possível uma ação eficiente da defesa civil. O modelo de previsão utilizou como referência as réguas linimétricas localizadas nos rios Tocantins e Araguaia nas cidades de Carolina e Conceição do Araguaia, distantes aproximadamente 225 e 270 km, respectivamente, da cidade de Marabá. O sistema utiliza o software de geoprocessamento ArcView 3.3, que teve implementada uma interface desenvolvida através da linguagem de programação orientada a objetos Avenue, com a finalidade de rodar o aplicativo do modelo hidrológico. O uso de menus e janelas customizados do sistema possibilitou o acesso a dados espaciais e tabelas de dados relacionais e/ou banco de dados cadastral, além de módulos de análise espacial e de visualização de dados geográficos em um Sistema de Informações Geográficas (SIG), possibilitando a previsão de enchentes na forma de mapas, tabelas e relatórios com a indicação das áreas inundadas para os períodos de 4, 3, 2 e 1 dia de antecedência do evento de enchente. O Sistema permitiu identificar os imóveis e as ruas atingidos, e possibilitará através de levantamentos futuros quantificar a população afetada e os prejuízos causados pelo desastre, facilitando que a defesa civil execute planos de ação para enfrentamento eficiente antes, durante e depois da ocorrência da enchente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O modelo OLAM tem como característica a vantagem de representar simultaneamente os fenômenos meteorológicos de escala global e regional através de um esquema de refinamento de grades. Durante o projeto REMAM, o modelo foi aplicado para alguns estudos de caso com objetivo de avaliar o desempenho do modelo na previsão numérica de tempo para a região leste da Amazônia. Estudos de caso foram feitos para os doze meses do ano de 2009. Os resultados do modelo para estes casos foram comparados com dados observados na região de estudo. A análise dos dados de precipitação mostrou que o modelo consegue representar a distribuição média da precipitação acumulada e os aspectos da sazonalidade da ocorrência dos eventos, mas não consegue prever individualmente a acumulação de precipitação local. No entanto, avaliação individual de alguns casos mostrou que o modelo OLAM conseguiu representar dinamicamente e prever, com alguns dias de antecedência, o desenvolvimento de fenômenos meteorológicos costeiros como as linhas de instabilidade, que são um dos mais importantes sistemas precipitantes da Amazônia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho, foi realizado um estudo de mapeamento de áreas de incidência e previsões para os casos de dengue na área urbana de Belém. Para as previsões foi utilizada à incidência de dengue com a precipitação pluviométrica a partir de modelos estatísticos, baseados na metodologia de Box e Jenkins de series temporais. O período do estudo foi de 05 anos (2007-2011). Na pesquisa temos métodos multivariados de series temporais, com uso de função de transferência e modelos espaciais, em que se analisou a existência de autocorrelações espaciais na variável em estudo. Os resultados das análises dos dados de incidência de casos de dengue e precipitação mostraram que, o aumento no número de casos de dengue acompanha o aumento na precipitação, demonstrando a relação direta entre o número de casos de dengue e a precipitação nos anos em estudo. O modelo de previsão construído para a incidência de casos de dengue apresentou um bom ajuste com resultados satisfatórios podendo, neste caso, ser utilizado na previsão da dengue. Em relação à análise espacial, foi possível uma visualização da incidência de casos na área urbana de Belém, com as respectivas áreas de incidência, mostrando os níveis de significância em porcentagem. Para o período estudado observou-se o comportamento e as variações dos casos de dengue, com destaque para quatro bairros: Marco, Guamá, Pedreira e Tapanã, com possíveis influências destes bairros nas áreas (bairros) vizinhas. Portanto, o presente estudo evidencia a contribuição para o planejamento das ações de controle da dengue, ao servir de instrumento no apoio às decisões na área de saúde pública.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O modelo OLAM foi desenvolvido com objetivo de estender a capacidade de representar os fenômenos de escala global e regional simultaneamente. Este modelo apresenta inovações quanto aos processos dinâmicos, configuração de grade, estrutura de memória e técnicas de solução numérica das equações prognósticas. As equações de Navier-Stokes são resolvidas através da técnica de volumes finitos que conservam massa, momento e energia. No presente trabalho, apresenta-se uma descrição sucinta do OLAM e alguns resultados de sua aplicação em simulações climáticas da precipitação mensal para a região norte da América do Sul, bem como em rodadas para previsão numérica de tempo regional. Os resultados mostram que o modelo consegue representar bem os aspectos meteorológicos de grande escala. Em geral, seu desempenho melhora quando são adotadas grades de maior resolução espacial, nas quais se verificam melhorias significativas tanto na estimativa da precipitação mensal regional, quanto na previsão numérica de tempo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O advento de novas formas multimídia tem atraído uma clientela exigente, onde preocupação não é somente com o serviço, mas também, com a qualidade que esse serviço pode ser oferecido. As WLAN (Wireless Local Area Networks) tornaram-se a forma mais comum de roteamento de Internet, devido ao seu baixo custo e facilidade de implementação. Para realizar um bom roteamento é necessário um planejamento, utilizando-se modelos. Os modelos de propagação existentes na literatura fazem a predição da intensidade do sinal, mas algumas vezes não contemplam a previsão de um bom serviço. Nesse sentido a presente dissertação propõe-se a elaborar um modelo de propagação empírico indoor multi-andar que não só prediz a potência recebida, mas também faz uma previsão para algumas métricas de QoS (Quality of Service) de chamadas VoIP (Voice over Internet Protocol). Para a elaboração do modelo proposto foram feitas campanhas de medição, em um prédio de dois andares, em pisos distintos mantendo-se a posição do ponto de acesso (PA) fixa. Estudos de geometria analítica para a contagem e agregação de perdas em pisos e paredes. Os resultados do modelo proposto foram comparados com um modelo da literatura que tem um comportamento similar, onde é possível verificar o melhor desempenho do modelo proposto, e para efeito de estudo um andar completamente simulado foi introduzido para avaliação.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O conhecimento prévio do valor da carga é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Este trabalho apresenta os resultados de um estudo investigativo da aplicação de Redes Neurais Artificiais do tipo Perceptron Multicamadas com treinamento baseado na Teoria da Informação para o problema de Previsão de Carga a curto prazo. A aprendizagem baseada na Teoria da Informação se concentra na utilização da quantidade de informação (Entropia) para treinamento de uma rede neural artificial. Dois modelos previsores são apresentados sendo que os mesmos foram desenvolvidos a partir de dados reais fornecidos por uma concessionária de energia. Para comparação e verificação da eficiência dos modelos propostos um terceiro modelo foi também desenvolvido utilizando uma rede neural com treinamento baseado no critério clássico do erro médio quadrático. Os resultados alcançados mostraram a eficiência dos sistemas propostos, que obtiveram melhores resultados de previsão quando comparados ao sistema de previsão baseado na rede treinada pelo critério do MSE e aos sistemas previsores já apresentados na literatura.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O fenômeno da turbulência está presente na maioria dos escoamentos observados na indústria e na natureza. Muitas são as considerações a respeito das dificuldades relacionadas à caracterização dos escoamentos turbulentos. Uma das muitas questões trata do procedimento de análise do problema através da descrição estatística dos campos por grandezas “médias”, o que leva ao problema de fechamento e à modelagem do tensor de Reynolds, normalmente com modelos baseados no conceito de viscosidade turbulenta. Os modelos de turbulência já existentes apresentam algumas deficiências na previsão do escoamento, além de outras limitações, o que justifica a busca por novas abordagens para o tratamento da turbulência. Neste trabalho, o problema de fechamento é tratado segundo a modelagem turbulenta baseada no conceito de viscosidade turbulenta. Um novo modelo de turbulência é proposto, que admite a existência de vórtices imersos no escoamento e aplica conceitos e definições relacionados à identificação de vórtices, com o uso do critério de identificação Q , que caracteriza a região do escoamento ocupada pelo vórtice. Propõe-se a investigação da aplicabilidade do critério Q em conjunto com o modelo k − ε , para o desenvolvimento de um novo modelo de turbulência chamado k − ε −Q . Validou-se a aplicabilidade do modelo através de um código numérico computacional para tratamento de escoamentos turbulentos. A solução numérica foi obtida através da discretização do domínio fluido, utilizando o método de volumes finitos e o método multigrid foi utilizado para resolver o sistema linear resultante. Como verificação, foi utilizado este modelo de turbulência para simular o escoamento em uma cavidade quadrada com tampa deslizante e o escoamento turbulento sobre um degrau. Os resultados obtidos foram confrontados com dados experimentais e demonstraram que o modelo aqui proposto se apresenta mais eficiente que o clássico modelo k − ε , no tratamento da turbulência nesses dois problemas clássicos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A predição do preço da energia elétrica é uma questão importante para todos os participantes do mercado, para que decidam as estratégias mais adequadas e estabeleçam os contratos bilaterais que maximizem seus lucros e minimizem os seus riscos. O preço da energia tipicamente exibe sazonalidade, alta volatilidade e picos. Além disso, o preço da energia é influenciado por muitos fatores, tais como: demanda de energia, clima e preço de combustíveis. Este trabalho propõe uma nova abordagem híbrida para a predição de preços de energia no mercado de curto prazo. Tal abordagem combina os filtros autorregressivos integrados de médias móveis (ARIMA) e modelos de Redes Neurais (RNA) numa estrutura em cascata e utiliza variáveis explanatórias. Um processo em dois passos é aplicado. Na primeira etapa, as variáveis explanatórias são preditas. Na segunda etapa, os preços de energia são preditos usando os valores futuros das variáveis exploratórias. O modelo proposto considera uma predição de 12 passos (semanas) a frente e é aplicada ao mercado brasileiro, que possui características únicas de comportamento e adota o despacho centralizado baseado em custo. Os resultados mostram uma boa capacidade de predição de picos de preço e uma exatidão satisfatória de acordo com as medidas de erro e testes de perda de cauda quando comparado com técnicas tradicionais. Em caráter complementar, é proposto um modelo classificador composto de árvores de decisão e RNA, com objetivo de explicitar as regras de formação de preços e, em conjunto com o modelo preditor, atuar como uma ferramenta atrativa para mitigar os riscos da comercialização de energia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Município de Marabá- PA, situado na região Amazônica, sudeste do Estado do Pará, sofre anualmente com eventos de enchentes, ocasionados pelo aumento periódico do rio Tocantins e pela situação de vulnerabilidade da população que reside em áreas de risco. A defesa civil estadual e municipal anualmente planeja e prepara equipes para ações de defesa no município. Nesta fase o monitoramento e previsão de eventos de enchentes são importantes. Portanto, com o objetivo de diminuir erros nas previsões hidrológicas para o Município de Marabá, desenvolveu-se um modelo estocástico para previsão de nível do rio Tocantins, baseado na metodologia de Box e Jenkins. Utilizou os dados de níveis diários observados nas estações hidrológicas de Marabá e Carolina e Conceição do Araguaia da Agência Nacional de Águas (ANA), do período de 01/12/ 2008 a 31/03/2011. Efetuou-se o ajustamento de três modelos (Mt, Nt e Yt), através de diferentes aplicativos estatísticos: o SAS e o Gretl, usando diferentes interpretações do comportamento das séries para gerar as equações dos modelos. A principal diferença entre os aplicativos é que no SAS usa o modelo de função de transferência na modelagem. Realizou-se uma classificação da variabilidade do nível do rio, através da técnica dos Quantis para o período de 1972 a 2011, examinando-se apenas as categorizações de níveis ACIMA e MUITO ACIMA do normal. Para análise de impactos socioeconômicos foram usados os dados das ações da Defesa Civil Estado do Pará nas cheias de 2009 e 2011. Os resultados mostraram que o número de eventos de cheias com níveis MUITO ACIMA do normal, geralmente, podem estar associados a eventos de La Niña. Outro resultado importante: os modelos gerados simularam muito bem o nível do rio para o período de sete dias (01/04/2011 a 07/04/2011). O modelo multivariado Nt (com pequenos erros) representou o comportamento da série original, subestimando os valores reais nos dias 3, 4 e 5 de abril de 2011, com erro máximo de 0,28 no dia 4. O modelo univariado (Yt) teve bons resultados nas simulações com erros absolutos em torno de 0,12 m. O modelo com menor erro absoluto (0,08m) para o mesmo período foi o modelo Mt, desenvolvido pelo aplicativo SAS, que interpreta a série original como sendo não linear e não estacionária. A análise quantitativa dos impactos fluviométricos, ocorridos nas enchentes de 2009 e 2011 na cidade de Marabá, revelou em média que mais de 4 mil famílias sofrem com estes eventos, implicado em gastos financeiros elevados. Logo, conclui-se que os modelos de previsão de níveis são importantes ferramentas que a Defesa Civil, utiliza no planejamento e preparo de ações preventivas para o município de Marabá.